Distinguishing Individual DNA Bases in a Network by Non‐Resonant Tip‐Enhanced Raman Scattering
The importance of identifying DNA bases at the single‐molecule level is well recognized for many biological applications. Although such identification can be achieved by electrical measurements using special setups, it is still not possible to identify single bases in real space by optical means owi...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2017-05, Vol.129 (20), p.5653-5656 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The importance of identifying DNA bases at the single‐molecule level is well recognized for many biological applications. Although such identification can be achieved by electrical measurements using special setups, it is still not possible to identify single bases in real space by optical means owing to the diffraction limit. Herein, we demonstrate the outstanding ability of scanning tunneling microscope (STM)‐controlled non‐resonant tip‐enhanced Raman scattering (TERS) to unambiguously distinguish two individual complementary DNA bases (adenine and thymine) with a spatial resolution down to 0.9 nm. The distinct Raman fingerprints identified for the two molecules allow to differentiate in real space individual DNA bases in coupled base pairs. The demonstrated ability of non‐resonant Raman scattering with super‐high spatial resolution will significantly extend the applicability of TERS, opening up new routes for single‐molecule DNA sequencing.
A oder T? TERS hat die Antwort: Die chemische Erkennung einzelner DNA‐Basen in Wasserstoffbrückennetzen gelingt mithilfe von spitzenverstärkter Raman‐Streuung (TERS) mit Subnanometerauflösung auf der Grundlage von Ultrahochvakuumtechniken und Tieftemperatur‐Rastertunnelmikroskopie. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.201702263 |