Mathematical simulation of complex formation of protein molecules allowing for their domain structure

A physical model of the interactions between protein molecules has been presented and an analysis of their propensity to form complex biological complexes has been performed. The reactivities of proteins have been studied using electrostatics methods based on the example of the histone chaperone Nap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technical physics 2017-04, Vol.62 (4), p.509-516
Hauptverfasser: Koshlan, T. V., Kulikov, K. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A physical model of the interactions between protein molecules has been presented and an analysis of their propensity to form complex biological complexes has been performed. The reactivities of proteins have been studied using electrostatics methods based on the example of the histone chaperone Nap1 and histones H2A and H2B. The capability of proteins to form stable biological complexes that allow for different segments of amino acid sequences has been analyzed. The ability of protein molecules to form compounds has been considered by calculating matrices of electrostatic potential energy of amino acid residues constituting the polypeptide chain. The method of block matrices has been used in the analysis of the ability of protein molecules to form complex biological compounds.
ISSN:1063-7842
1090-6525
DOI:10.1134/S1063784217040119