Dirichlet problems for the p-Laplacian with a convection term
We consider the nonlinear Dirichlet boundary value problem in a bounded domain Ω ⊂ R N with smooth boundary ∂ Ω , where Δ p u = def div ( | ∇ u | p - 2 ∇ u ) with 1 < p < ∞ , λ ∈ R , and h ∈ L ∞ ( Ω ) . The term B ( x , ∇ u ) is a continuous function assumed to be also homogeneous of degree (...
Gespeichert in:
Veröffentlicht in: | Revista matemática complutense 2017-05, Vol.30 (2), p.313-334 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the nonlinear Dirichlet boundary value problem
in a bounded domain
Ω
⊂
R
N
with smooth boundary
∂
Ω
, where
Δ
p
u
=
def
div
(
|
∇
u
|
p
-
2
∇
u
)
with
1
<
p
<
∞
,
λ
∈
R
, and
h
∈
L
∞
(
Ω
)
. The term
B
(
x
,
∇
u
)
is a continuous function assumed to be also homogeneous of degree
(
p
-
1
)
and odd with respect to the second variable;
B
(
x
,
η
)
=
(
a
(
x
)
·
η
)
|
η
|
p
-
2
being a canonical example with a given vector field
a
∈
[
C
(
Ω
¯
)
]
N
, for
(
x
,
η
)
∈
Ω
×
R
N
. For the corresponding eigenvalue problem obtained by setting
h
≡
0
, we show existence, simplicity, and isolation of the principal eigenvalue
λ
1
(
λ
1
>
0
). When
h
≢
0
and
-
∞
<
λ
<
λ
1
, we prove that there exists a weak solution
u
∈
W
0
1
,
p
(
Ω
)
to problem (
P
); this solution is unique provided
λ
<
0
(without any further assumptions). When
h
≥
0
,
h
≢
0
, and
0
≤
λ
<
λ
1
, we show that the solution is positive and also unique. |
---|---|
ISSN: | 1139-1138 1988-2807 |
DOI: | 10.1007/s13163-017-0227-4 |