A discrete version of the Mishou theorem. II
In 2007, H. Mishou obtained a joint universality theorem for the Riemann zetafunction ζ( s ) and the Hurwitz zeta-function ζ( s , α) with transcendental parameter α. The theorem states that a pair of analytic functions can be simultaneously approximated by the shifts ζ( s + i τ ) and ζ( s + i τ, α),...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics 2017, Vol.296 (1), p.172-182 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2007, H. Mishou obtained a joint universality theorem for the Riemann zetafunction ζ(
s
) and the Hurwitz zeta-function ζ(
s
, α) with transcendental parameter α. The theorem states that a pair of analytic functions can be simultaneously approximated by the shifts ζ(
s
+
i
τ ) and ζ(
s
+
i
τ, α), τ ∈ R. In 2015, E. Buivydas and the author established a version of this theorem in which the approximation is performed by the discrete shifts ζ(
s
+
ikh
) and ζ(
s
+
ikh
, α),
h
> 0,
k
= 0, 1, 2... In the present study, we prove joint universality for the functions ζ(
s
) and ζ(
s
, α) in the sense of approximation of a pair of analytic functions by the shifts ζ(
s
+
ik
β
h
) and ζ(
s
+
ik
β
h
, α) with fixed 0 <
β
< 1. |
---|---|
ISSN: | 0081-5438 1531-8605 |
DOI: | 10.1134/S008154381701014X |