Fractional Laplace Operator and Meijer G-function

We significantly expand the number of functions whose image under the fractional Laplace operator can be computed explicitly. In particular, we show that the fractional Laplace operator maps Meijer G-functions of | x | 2 , or generalized hypergeometric functions of - | x | 2 , multiplied by a solid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive approximation 2017-06, Vol.45 (3), p.427-448
Hauptverfasser: Dyda, Bartłomiej, Kuznetsov, Alexey, Kwaśnicki, Mateusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 3
container_start_page 427
container_title Constructive approximation
container_volume 45
creator Dyda, Bartłomiej
Kuznetsov, Alexey
Kwaśnicki, Mateusz
description We significantly expand the number of functions whose image under the fractional Laplace operator can be computed explicitly. In particular, we show that the fractional Laplace operator maps Meijer G-functions of | x | 2 , or generalized hypergeometric functions of - | x | 2 , multiplied by a solid harmonic polynomial, into the same class of functions. As one important application of this result, we produce a complete system of eigenfunctions of the operator ( 1 - | x | 2 ) + α / 2 ( - Δ ) α / 2 with the Dirichlet boundary conditions outside of the unit ball. The latter result will be used to estimate the eigenvalues of the fractional Laplace operator in the unit ball in a companion paper (Dyda et al., Eigenvalues of the fractional Laplace operator in the unit ball, 2015 , arXiv:1509.08533 ).
doi_str_mv 10.1007/s00365-016-9336-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1892379755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1892379755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b1f6ff980059a72d3335dcf6b3f32b97f375361c5980eb6c8b741c18efb54ff43</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9giMRvucrEdj6iiLVJQF5gtx7VRopIEOx3496SEgYXppKfvPZ0-xm4R7hFAPSQAkoIDSq6JJC_O2AILyjnoAs7ZAlBNYa7kJbtKqQVAUZJaMFxH68am7-whq-xwsM5nu8FHO_Yxs90-e_FN62O24eHY_YDX7CLYQ_I3v3fJ3tZPr6str3ab59VjxR2hHHmNQYagSwChrcr3RCT2LsiaAuW1VoGUIIlOTIivpStrVaDD0odaFCEUtGR38-4Q-8-jT6Np-2Oc_kwGS52T0kqIicKZcrFPKfpghth82PhlEMzJjJnNmMmMOZkxp-V87qSJ7d59_LP8b-kb2XFkaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892379755</pqid></control><display><type>article</type><title>Fractional Laplace Operator and Meijer G-function</title><source>Springer Nature</source><creator>Dyda, Bartłomiej ; Kuznetsov, Alexey ; Kwaśnicki, Mateusz</creator><creatorcontrib>Dyda, Bartłomiej ; Kuznetsov, Alexey ; Kwaśnicki, Mateusz</creatorcontrib><description>We significantly expand the number of functions whose image under the fractional Laplace operator can be computed explicitly. In particular, we show that the fractional Laplace operator maps Meijer G-functions of | x | 2 , or generalized hypergeometric functions of - | x | 2 , multiplied by a solid harmonic polynomial, into the same class of functions. As one important application of this result, we produce a complete system of eigenfunctions of the operator ( 1 - | x | 2 ) + α / 2 ( - Δ ) α / 2 with the Dirichlet boundary conditions outside of the unit ball. The latter result will be used to estimate the eigenvalues of the fractional Laplace operator in the unit ball in a companion paper (Dyda et al., Eigenvalues of the fractional Laplace operator in the unit ball, 2015 , arXiv:1509.08533 ).</description><identifier>ISSN: 0176-4276</identifier><identifier>EISSN: 1432-0940</identifier><identifier>DOI: 10.1007/s00365-016-9336-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Hypergeometric functions ; Mathematics ; Mathematics and Statistics ; Numerical Analysis</subject><ispartof>Constructive approximation, 2017-06, Vol.45 (3), p.427-448</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b1f6ff980059a72d3335dcf6b3f32b97f375361c5980eb6c8b741c18efb54ff43</citedby><cites>FETCH-LOGICAL-c316t-b1f6ff980059a72d3335dcf6b3f32b97f375361c5980eb6c8b741c18efb54ff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00365-016-9336-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00365-016-9336-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dyda, Bartłomiej</creatorcontrib><creatorcontrib>Kuznetsov, Alexey</creatorcontrib><creatorcontrib>Kwaśnicki, Mateusz</creatorcontrib><title>Fractional Laplace Operator and Meijer G-function</title><title>Constructive approximation</title><addtitle>Constr Approx</addtitle><description>We significantly expand the number of functions whose image under the fractional Laplace operator can be computed explicitly. In particular, we show that the fractional Laplace operator maps Meijer G-functions of | x | 2 , or generalized hypergeometric functions of - | x | 2 , multiplied by a solid harmonic polynomial, into the same class of functions. As one important application of this result, we produce a complete system of eigenfunctions of the operator ( 1 - | x | 2 ) + α / 2 ( - Δ ) α / 2 with the Dirichlet boundary conditions outside of the unit ball. The latter result will be used to estimate the eigenvalues of the fractional Laplace operator in the unit ball in a companion paper (Dyda et al., Eigenvalues of the fractional Laplace operator in the unit ball, 2015 , arXiv:1509.08533 ).</description><subject>Analysis</subject><subject>Hypergeometric functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><issn>0176-4276</issn><issn>1432-0940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9giMRvucrEdj6iiLVJQF5gtx7VRopIEOx3496SEgYXppKfvPZ0-xm4R7hFAPSQAkoIDSq6JJC_O2AILyjnoAs7ZAlBNYa7kJbtKqQVAUZJaMFxH68am7-whq-xwsM5nu8FHO_Yxs90-e_FN62O24eHY_YDX7CLYQ_I3v3fJ3tZPr6str3ab59VjxR2hHHmNQYagSwChrcr3RCT2LsiaAuW1VoGUIIlOTIivpStrVaDD0odaFCEUtGR38-4Q-8-jT6Np-2Oc_kwGS52T0kqIicKZcrFPKfpghth82PhlEMzJjJnNmMmMOZkxp-V87qSJ7d59_LP8b-kb2XFkaQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Dyda, Bartłomiej</creator><creator>Kuznetsov, Alexey</creator><creator>Kwaśnicki, Mateusz</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Fractional Laplace Operator and Meijer G-function</title><author>Dyda, Bartłomiej ; Kuznetsov, Alexey ; Kwaśnicki, Mateusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b1f6ff980059a72d3335dcf6b3f32b97f375361c5980eb6c8b741c18efb54ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Hypergeometric functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyda, Bartłomiej</creatorcontrib><creatorcontrib>Kuznetsov, Alexey</creatorcontrib><creatorcontrib>Kwaśnicki, Mateusz</creatorcontrib><collection>CrossRef</collection><jtitle>Constructive approximation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyda, Bartłomiej</au><au>Kuznetsov, Alexey</au><au>Kwaśnicki, Mateusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Laplace Operator and Meijer G-function</atitle><jtitle>Constructive approximation</jtitle><stitle>Constr Approx</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>45</volume><issue>3</issue><spage>427</spage><epage>448</epage><pages>427-448</pages><issn>0176-4276</issn><eissn>1432-0940</eissn><abstract>We significantly expand the number of functions whose image under the fractional Laplace operator can be computed explicitly. In particular, we show that the fractional Laplace operator maps Meijer G-functions of | x | 2 , or generalized hypergeometric functions of - | x | 2 , multiplied by a solid harmonic polynomial, into the same class of functions. As one important application of this result, we produce a complete system of eigenfunctions of the operator ( 1 - | x | 2 ) + α / 2 ( - Δ ) α / 2 with the Dirichlet boundary conditions outside of the unit ball. The latter result will be used to estimate the eigenvalues of the fractional Laplace operator in the unit ball in a companion paper (Dyda et al., Eigenvalues of the fractional Laplace operator in the unit ball, 2015 , arXiv:1509.08533 ).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00365-016-9336-4</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0176-4276
ispartof Constructive approximation, 2017-06, Vol.45 (3), p.427-448
issn 0176-4276
1432-0940
language eng
recordid cdi_proquest_journals_1892379755
source Springer Nature
subjects Analysis
Hypergeometric functions
Mathematics
Mathematics and Statistics
Numerical Analysis
title Fractional Laplace Operator and Meijer G-function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Laplace%20Operator%20and%20Meijer%20G-function&rft.jtitle=Constructive%20approximation&rft.au=Dyda,%20Bart%C5%82omiej&rft.date=2017-06-01&rft.volume=45&rft.issue=3&rft.spage=427&rft.epage=448&rft.pages=427-448&rft.issn=0176-4276&rft.eissn=1432-0940&rft_id=info:doi/10.1007/s00365-016-9336-4&rft_dat=%3Cproquest_cross%3E1892379755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1892379755&rft_id=info:pmid/&rfr_iscdi=true