Fractional Laplace Operator and Meijer G-function
We significantly expand the number of functions whose image under the fractional Laplace operator can be computed explicitly. In particular, we show that the fractional Laplace operator maps Meijer G-functions of | x | 2 , or generalized hypergeometric functions of - | x | 2 , multiplied by a solid...
Gespeichert in:
Veröffentlicht in: | Constructive approximation 2017-06, Vol.45 (3), p.427-448 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We significantly expand the number of functions whose image under the fractional Laplace operator can be computed explicitly. In particular, we show that the fractional Laplace operator maps Meijer G-functions of
|
x
|
2
, or generalized hypergeometric functions of
-
|
x
|
2
, multiplied by a solid harmonic polynomial, into the same class of functions. As one important application of this result, we produce a complete system of eigenfunctions of the operator
(
1
-
|
x
|
2
)
+
α
/
2
(
-
Δ
)
α
/
2
with the Dirichlet boundary conditions outside of the unit ball. The latter result will be used to estimate the eigenvalues of the fractional Laplace operator in the unit ball in a companion paper (Dyda et al., Eigenvalues of the fractional Laplace operator in the unit ball,
2015
,
arXiv:1509.08533
). |
---|---|
ISSN: | 0176-4276 1432-0940 |
DOI: | 10.1007/s00365-016-9336-4 |