Milnor K 2 and p-adic zeta functions for real quadratic fields
G. Stevens ( http://math.bu.edu/people/ghs/research.html ) constructed a modular symbol taking values in circular K-groups, which is intimately related to Eisenstein series. We make precise a relationship between his Milnor K-theoretic modular symbol Φ M K and the period integrals of Eisenstein seri...
Gespeichert in:
Veröffentlicht in: | Annales mathématiques du Québec 2017-04, Vol.41 (1), p.3-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | G. Stevens ( http://math.bu.edu/people/ghs/research.html ) constructed a modular symbol taking values in circular K-groups, which is intimately related to Eisenstein series. We make precise a relationship between his Milnor K-theoretic modular symbol Φ M K and the period integrals of Eisenstein series. The main goal here is to extract from Φ M K a group 1-cocyle on SL 2 ( Q ) with values in differential form valued distributions and use this to construct a p-adic locally analytic distribution which gives a p-adic partial zeta function of a real quadratic field. |
---|---|
ISSN: | 2195-4755 2195-4763 |
DOI: | 10.1007/s40316-017-0079-9 |