Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data

Deep learning (DL) is a powerful state-of-the-art technique for image processing including remote sensing (RS) images. This letter describes a multilevel DL architecture that targets land cover and crop type classification from multitemporal multisource satellite imagery. The pillars of the architec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-05, Vol.14 (5), p.778-782
Hauptverfasser: Kussul, Nataliia, Lavreniuk, Mykola, Skakun, Sergii, Shelestov, Andrii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning (DL) is a powerful state-of-the-art technique for image processing including remote sensing (RS) images. This letter describes a multilevel DL architecture that targets land cover and crop type classification from multitemporal multisource satellite imagery. The pillars of the architecture are unsupervised neural network (NN) that is used for optical imagery segmentation and missing data restoration due to clouds and shadows, and an ensemble of supervised NNs. As basic supervised NN architecture, we use a traditional fully connected multilayer perceptron (MLP) and the most commonly used approach in RS community random forest, and compare them with convolutional NNs (CNNs). Experiments are carried out for the joint experiment of crop assessment and monitoring test site in Ukraine for classification of crops in a heterogeneous environment using nineteen multitemporal scenes acquired by Landsat-8 and Sentinel-1A RS satellites. The architecture with an ensemble of CNNs outperforms the one with MLPs allowing us to better discriminate certain summer crop types, in particular maize and soybeans, and yielding the target accuracies more than 85% for all major crops (wheat, maize, sunflower, soybeans, and sugar beet).
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2017.2681128