Road Structure Refined CNN for Road Extraction in Aerial Image

In this letter, we propose a road structure refined convolutional neural network (RSRCNN) approach for road extraction in aerial images. In order to obtain structured output of road extraction, both deconvolutional and fusion layers are designed in the architecture of RSRCNN. For training RSRCNN, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-05, Vol.14 (5), p.709-713
Hauptverfasser: Wei, Yanan, Wang, Zulin, Xu, Mai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we propose a road structure refined convolutional neural network (RSRCNN) approach for road extraction in aerial images. In order to obtain structured output of road extraction, both deconvolutional and fusion layers are designed in the architecture of RSRCNN. For training RSRCNN, a new loss function is proposed to incorporate the geometric information of road structure in cross-entropy loss, thus called road-structure-based loss function. Experimental results demonstrate that the trained RSRCNN model is able to advance the state-of-the-art road extraction for aerial images, in terms of precision, recall, F-score, and accuracy.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2017.2672734