Road Structure Refined CNN for Road Extraction in Aerial Image
In this letter, we propose a road structure refined convolutional neural network (RSRCNN) approach for road extraction in aerial images. In order to obtain structured output of road extraction, both deconvolutional and fusion layers are designed in the architecture of RSRCNN. For training RSRCNN, a...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2017-05, Vol.14 (5), p.709-713 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we propose a road structure refined convolutional neural network (RSRCNN) approach for road extraction in aerial images. In order to obtain structured output of road extraction, both deconvolutional and fusion layers are designed in the architecture of RSRCNN. For training RSRCNN, a new loss function is proposed to incorporate the geometric information of road structure in cross-entropy loss, thus called road-structure-based loss function. Experimental results demonstrate that the trained RSRCNN model is able to advance the state-of-the-art road extraction for aerial images, in terms of precision, recall, F-score, and accuracy. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2017.2672734 |