Electrosynthesis of ammonia in hydrogen-producing sorption-active electrochemical matrix
A fundamentally new low-temperature method of synthesizing ammonia has been suggested, which is carried out directly in a hydrogen-producing matrix with a material made of cellulose fabric with porous layers of ethanol–cyclam PVC derivatives with activated carbon with aquacomplexes of sodium hydroxi...
Gespeichert in:
Veröffentlicht in: | Theoretical foundations of chemical engineering 2017-03, Vol.51 (2), p.151-154 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A fundamentally new low-temperature method of synthesizing ammonia has been suggested, which is carried out directly in a hydrogen-producing matrix with a material made of cellulose fabric with porous layers of ethanol–cyclam PVC derivatives with activated carbon with aquacomplexes of sodium hydroxide grafted onto its fibers. Complexes of zero-valent nickel and iron within the cyclam structure are formed in the matrix. Hydrogen is formed on the cathode in the course of electrolysis of water from sodium hydroxide aqua complexes on particles of activated carbon as microelectrodes. Hydrogen forms bonds with complexes of zero-valent nickel. Nitrogen from adsorbed air is bound in complexes of zero-valent iron and interacts with active atomic hydrogen. Water is transported to carbon particles through the fabric onto which the layer is grafted. The process is carried out at the room temperature. It has been found that the forming hydrogen is almost completely used. As opposed to the existing methods of synthesis of ammonia, the suggested process is carried out at room temperature and normal pressure. |
---|---|
ISSN: | 0040-5795 1608-3431 |
DOI: | 10.1134/S0040579517020129 |