Virtual Synchronous Power Strategy for Multiple HVDC Interconnections of Multi-Area AGC Power Systems

Automatic generation control (AGC) in multi-area interconnected power systems is experiencing several adaptions due to increasing level of power converter based components in the system. The concept of virtual synchronous power (VSP) to simulate the dynamic effects of virtual inertia emulations by H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2017-05, Vol.32 (3), p.1665-1677
Hauptverfasser: Rakhshani, Elyas, Remon, Daniel, Cantarellas, Antoni Mir, Martinez Garcia, Jorge, Rodriguez, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic generation control (AGC) in multi-area interconnected power systems is experiencing several adaptions due to increasing level of power converter based components in the system. The concept of virtual synchronous power (VSP) to simulate the dynamic effects of virtual inertia emulations by HVDC links for higher level control applications is introduced and reflected in the multi-area AGC model. By using this proposed combination in the AGC model, the dynamic performance of the studied system shows a significant improvement. The proposed formulation is generalized for multi-area systems with multiple HVDC links. The active power loop control in VSP-based HVDC links has a second-order characteristic, which makes a simultaneous enabling of damping and inertia emulations into the system. Trajectory sensitivities are also used to analyze the effects of VSP's parameters on the system stability. The effectiveness of the proposed concept on dynamic improvements is tested through MATLAB simulation of a four-area system.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2016.2592971