The DD^G-classifier in the functional setting
The maximum depth classifier was the first attempt to use data depths instead of multivariate raw data in classification problems. Recently, the DD-classifier has addressed some of the serious limitations of this classifier but issues still remain. This paper aims to extend the DD-classifier as foll...
Gespeichert in:
Veröffentlicht in: | Test (Madrid, Spain) Spain), 2017-03, Vol.26 (1), p.119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The maximum depth classifier was the first attempt to use data depths instead of multivariate raw data in classification problems. Recently, the DD-classifier has addressed some of the serious limitations of this classifier but issues still remain. This paper aims to extend the DD-classifier as follows: first, by enabling it to handle more than two groups; second, by applying regular classification methods (such as kNN, linear or quadratic classifiers, recursive partitioning, etc) to DD-plots, which is particularly useful, because it gives insights based on the diagnostics of these methods; and third, by integrating various sources of information (data depths, multivariate functional data, etc) in the classification procedure in a unified way. This paper also proposes an enhanced revision of several functional data depths and it provides a simulation study and applications to some real data sets. |
---|---|
ISSN: | 1133-0686 1863-8260 |
DOI: | 10.1007/s11749-016-0502-6 |