BIAS CORRECTION OF SEMIPARAMETRIC LONG MEMORY PARAMETER ESTIMATORS VIA THE PREFILTERED SIEVE BOOTSTRAP

This paper investigates bootstrap-based bias correction of semiparametric estimators of the long memory parameter, d, in fractionally integrated processes. The re-sampling method involves the application of the sieve bootstrap to data prefiltered by a preliminary semiparametric estimate of the long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2017-06, Vol.33 (3), p.578-609
Hauptverfasser: Poskitt, D. S., Martin, Gael M., Grose, Simone D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates bootstrap-based bias correction of semiparametric estimators of the long memory parameter, d, in fractionally integrated processes. The re-sampling method involves the application of the sieve bootstrap to data prefiltered by a preliminary semiparametric estimate of the long memory parameter. Theoretical justification for using the bootstrap technique to bias adjust log periodogram and semiparametric local Whittle estimators of the memory parameter is provided in the case where the true value of d lies in the range 0 ≤ d < 0.5. That the bootstrap method provides confidence intervals with the correct asymptotic coverage is also proven, with the intervals shown to adjust explicitly for bias, as estimated via the bootstrap. Simulation evidence comparing the performance of the bootstrap bias correction with analytical bias-correction techniques is presented. The bootstrap method is shown to produce notable bias reductions, in particular when applied to an estimator for which some degree of bias reduction has already been accomplished by analytical means.
ISSN:0266-4666
1469-4360
DOI:10.1017/S0266466616000050