Fe3N‐Co2N Nanowires Array: A Non‐Noble‐Metal Bifunctional Catalyst Electrode for High‐Performance Glucose Oxidation and H2O2 Reduction toward Non‐Enzymatic Sensing Applications

Among reported electrode materials, a nanoarray is an attractive architecture for molecular detection because of its large specific surface area and easy accessibility for target molecules. Here, a new Fe3N‐Co2N nanowires array grown on carbon cloth (Fe3N‐Co2N/CC) is reported as a non‐noble‐metal bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2017-04, Vol.23 (22), p.5214-5218
Hauptverfasser: Zhou, Dan, Cao, Xiaoqin, Wang, Zao, Hao, Shuai, Hou, Xiandeng, Qu, Fengli, Du, Gu, Asiri, Abdullah M., Zheng, Chengbin, Sun, Xuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among reported electrode materials, a nanoarray is an attractive architecture for molecular detection because of its large specific surface area and easy accessibility for target molecules. Here, a new Fe3N‐Co2N nanowires array grown on carbon cloth (Fe3N‐Co2N/CC) is reported as a non‐noble‐metal bifunctional catalyst electrode for high‐performance glucose oxidation and H2O2 reduction. As an electrochemical non‐enzymatic sensor for glucose detection, Fe3N‐Co2N/CC shows a fast response time of 8 s, a low detection limit (LOD) of 77 nm (signal/noise=3), and a high sensitivity of 4333.7 μA mm−1 cm−2. As an H2O2 sensor, it shows a LOD of 59 nm (signal/noise=3) and a sensitivity of 2273.8 μA mm−1 cm−2 with a response time of 2 s. In addition, the proposed sensor is stable with high selectivity, specificity, and reproducibility, and its application for real sample analysis has been successfully demonstrated. A Fe3N‐Co2N nanowires array behaves as a non‐noble‐metal bifunctional catalyst electrode for high‐performance glucose oxidation and H2O2 reduction and, thus, selective non‐enzymatic detection. For glucose detection, it shows a low detection limit (LOD) of 77 nm (signal/noise=3) and a sensitivity of 4333.7 μA mm−1 cm−2. As an H2O2 sensor, it shows an LOD of 59 nm with a sensitivity of 2273.8 μA mm−1 cm−2.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201700594