Two-Dimensional Layered Double Hydroxide Derived from Vermiculite Waste Water Supported Highly Dispersed Ni Nanoparticles for CO Methanation

Expanded multilayered vermiculite (VMT) was successfully used as catalyst support and Ni/VMT synthesized by microwave irradiation assisted synthesis (MIAS) exhibited excellent performance in our previous work. We also developed a two-dimensional porous SiO2 nanomesh (2D VMT-SiO2) by mixed-acid etchi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2017-03, Vol.7 (3), p.79
Hauptverfasser: Li, Panpan, Zhu, Mingyuan, Tian, Zhiqun, Han, Yang, Zhang, Yu, Zhou, Tuantuan, Kang, Lihua, Dan, Jianming, Guo, Xuhong, Yu, Feng, Wang, Qiang, Dai, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Expanded multilayered vermiculite (VMT) was successfully used as catalyst support and Ni/VMT synthesized by microwave irradiation assisted synthesis (MIAS) exhibited excellent performance in our previous work. We also developed a two-dimensional porous SiO2 nanomesh (2D VMT-SiO2) by mixed-acid etching of VMT. Compared with three-dimensional (3D) MCM-41, 2D VMT-SiO2 as a catalyst support provided a superior position for implantation of NiO species and the as-obtained catalyst exhibited excellent performance. In this paper, we successfully synthesized a layered double hydroxide (LDH) using the spent liquor after mixed-acid etching of VMT, which mainly contained Mg2+ and Al3+. The as-calcined layered double oxide (LDO) was used as a catalyst support for CO methanation. Compared with Ni/MgAl-LDO, Ni/VMT-LDO had smaller active component particles; therefore, in this study, it exhibited excellent catalytic performance over the whole temperature range of 250–500 °C. Ni/VMT-LDO achieved the best activity with 87.88% CO conversion, 89.97% CH4 selectivity, and 12.47 × 10−2·s−1 turn over frequency (TOF) at 400 °C under a gas hourly space velocity of 20,000 mL/g/h. This study demonstrated that VMT-LDO as a catalyst support provided an efficient way to develop high-performance catalysts for synthetic natural gas (SNG) from syngas.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal7030079