Ultrafast spatiotemporal photocarrier dynamics near GaN surfaces studied by terahertz emission spectroscopy

Gallium nitride (GaN) is a promising wide-bandgap semiconductor, and new characterization tools are needed to study its local crystallinity, carrier dynamics, and doping effects. Terahertz (THz) emission spectroscopy (TES) is an emerging experimental technique that can probe the ultrafast carrier dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-09, Vol.10 (1), p.14633-14633, Article 14633
Hauptverfasser: Yamahara, Kota, Mannan, Abdul, Kawayama, Iwao, Nakanishi, Hidetoshi, Tonouchi, Masayoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gallium nitride (GaN) is a promising wide-bandgap semiconductor, and new characterization tools are needed to study its local crystallinity, carrier dynamics, and doping effects. Terahertz (THz) emission spectroscopy (TES) is an emerging experimental technique that can probe the ultrafast carrier dynamics in optically excited semiconductors. In this work, the carrier dynamics and THz emission mechanisms of GaN were examined in unintentionally doped n-type, Si-doped n-type, and Mg-doped p-type GaN films. The photocarriers excited near the surface travel from the excited-area in an ultrafast manner and generate THz radiation in accordance with the time derivative of the surge drift current. The polarity of the THz amplitude can be used to determine the majority carrier type in GaN films through a non-contact and non-destructive method. Unique THz emission excited by photon energies less than the bandgap was also observed in the p-type GaN film.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-71728-x