Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange
Visible light Bi 2 O 3 /TiO 2 nanocomposites are successfully prepared with different dosages of Bi 2 O 3 by hydrothermal process. All the as-prepared samples are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM), Brunauer-Emmett-Teller analysis (...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2017-04, Vol.19 (4), p.1, Article 144 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 19 |
creator | Malligavathy, M. Iyyapushpam, S. Nishanthi, S. T. Pathinettam Padiyan, D. |
description | Visible light Bi
2
O
3
/TiO
2
nanocomposites are successfully prepared with different dosages of Bi
2
O
3
by hydrothermal process. All the as-prepared samples are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM), Brunauer-Emmett-Teller analysis (BET), N
2
adsorption-desorption measurement, and UV-Vis diffuse reflectance spectra (DRS). XRD and Raman spectra reveal the anatase phase of both TiO
2
and Bi
2
O
3
/TiO
2
nanocomposites. X-ray diffraction patterns demonstrate that the bismuth ions did not enter into the lattice of TiO
2
, and Bi
2
O
3
is extremely dispersive on the surface of TiO
2
nanoparticles. The incorporation of Bi
2
O
3
in TiO
2
leads to the spectral response of TiO
2
in the visible light region and efficient separation of charge carriers. The enhanced visible light activity is tested by the photocatalytic degradation of methyl orange under light illumination, and the performance of Bi
2
O
3
/TiO
2
nanocomposites are superior than that of pure TiO
2
which is ascribed to the efficient charge separation and transfer across the Bi
2
O
3
/TiO
2
junction. Bi
2
O
3
/TiO
2
nanocomposite (20 mg) loaded with 0.25 of Bi
2
O
3
dispersed in 50 ml of 5 ppm methyl orange solution exhibited the highest photocatalytic activity of 98.86% within 240 min of irradiation, which is attributed to the low band gap, high surface area, and the strong interaction between Bi
2
O
3
and TiO
2
. |
doi_str_mv | 10.1007/s11051-017-3806-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1887317019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321684723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-17572d4b3f7340ca8e9d7b13d0f97adce1aa954f9990e51360191bc4032841833</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxSMEEqXwAdgsMYf64jS2R6j4J1WqhIrEZjm206YkcbBd1Ex8dRyVgYXpTnfvvdP9kuQa8C1gTGceAM8hxUBTwnCRHk6SCcxpljJevJ_GnjCWYlrk58mF9zuMoch4Nkm-X00r3YcsG4OUDLIZQq2QVKH-qsOAbIXu62xFZut6laFOdlbZtre-Dsaj3pleOqNROaDtoJ0NW-Na2aDWhK3VqLIOxRHSZuOklqG23Rg4bocGWSe7jblMzirZeHP1W6fJ2-PDevGcLldPL4u7Zapy4CEFGn_ReUkqSnKsJDNc0xKIxhWnUisDUvJ5XnHOsZkDKTBwKFWOScZyYIRMk5tjbu_s5974IHZ277p4UgBjlACNjqiCo0o5670zlehdHfkMArAYOYsjZxE5i5GzOERPdvT4qI0fuT_J_5p-AGDdgfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887317019</pqid></control><display><type>article</type><title>Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange</title><source>Springer Nature - Complete Springer Journals</source><creator>Malligavathy, M. ; Iyyapushpam, S. ; Nishanthi, S. T. ; Pathinettam Padiyan, D.</creator><creatorcontrib>Malligavathy, M. ; Iyyapushpam, S. ; Nishanthi, S. T. ; Pathinettam Padiyan, D.</creatorcontrib><description>Visible light Bi
2
O
3
/TiO
2
nanocomposites are successfully prepared with different dosages of Bi
2
O
3
by hydrothermal process. All the as-prepared samples are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM), Brunauer-Emmett-Teller analysis (BET), N
2
adsorption-desorption measurement, and UV-Vis diffuse reflectance spectra (DRS). XRD and Raman spectra reveal the anatase phase of both TiO
2
and Bi
2
O
3
/TiO
2
nanocomposites. X-ray diffraction patterns demonstrate that the bismuth ions did not enter into the lattice of TiO
2
, and Bi
2
O
3
is extremely dispersive on the surface of TiO
2
nanoparticles. The incorporation of Bi
2
O
3
in TiO
2
leads to the spectral response of TiO
2
in the visible light region and efficient separation of charge carriers. The enhanced visible light activity is tested by the photocatalytic degradation of methyl orange under light illumination, and the performance of Bi
2
O
3
/TiO
2
nanocomposites are superior than that of pure TiO
2
which is ascribed to the efficient charge separation and transfer across the Bi
2
O
3
/TiO
2
junction. Bi
2
O
3
/TiO
2
nanocomposite (20 mg) loaded with 0.25 of Bi
2
O
3
dispersed in 50 ml of 5 ppm methyl orange solution exhibited the highest photocatalytic activity of 98.86% within 240 min of irradiation, which is attributed to the low band gap, high surface area, and the strong interaction between Bi
2
O
3
and TiO
2
.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-017-3806-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorption ; Bismuth oxides ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diffraction ; Energy gap ; Illumination ; Inorganic Chemistry ; Irradiation ; Lasers ; Materials Science ; Microscopes ; Nanocomposites ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Photocatalysis ; Photodegradation ; Photonics ; Physical Chemistry ; Raman spectroscopy ; Research Paper ; Scanning electron microscopy ; Surface area ; Titanium dioxide ; Transmission electron microscopy ; X-ray diffraction ; X-rays</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2017-04, Vol.19 (4), p.1, Article 144</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Journal of Nanoparticle Research is a copyright of Springer, 2017.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-17572d4b3f7340ca8e9d7b13d0f97adce1aa954f9990e51360191bc4032841833</citedby><cites>FETCH-LOGICAL-c419t-17572d4b3f7340ca8e9d7b13d0f97adce1aa954f9990e51360191bc4032841833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-017-3806-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-017-3806-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Malligavathy, M.</creatorcontrib><creatorcontrib>Iyyapushpam, S.</creatorcontrib><creatorcontrib>Nishanthi, S. T.</creatorcontrib><creatorcontrib>Pathinettam Padiyan, D.</creatorcontrib><title>Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Visible light Bi
2
O
3
/TiO
2
nanocomposites are successfully prepared with different dosages of Bi
2
O
3
by hydrothermal process. All the as-prepared samples are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM), Brunauer-Emmett-Teller analysis (BET), N
2
adsorption-desorption measurement, and UV-Vis diffuse reflectance spectra (DRS). XRD and Raman spectra reveal the anatase phase of both TiO
2
and Bi
2
O
3
/TiO
2
nanocomposites. X-ray diffraction patterns demonstrate that the bismuth ions did not enter into the lattice of TiO
2
, and Bi
2
O
3
is extremely dispersive on the surface of TiO
2
nanoparticles. The incorporation of Bi
2
O
3
in TiO
2
leads to the spectral response of TiO
2
in the visible light region and efficient separation of charge carriers. The enhanced visible light activity is tested by the photocatalytic degradation of methyl orange under light illumination, and the performance of Bi
2
O
3
/TiO
2
nanocomposites are superior than that of pure TiO
2
which is ascribed to the efficient charge separation and transfer across the Bi
2
O
3
/TiO
2
junction. Bi
2
O
3
/TiO
2
nanocomposite (20 mg) loaded with 0.25 of Bi
2
O
3
dispersed in 50 ml of 5 ppm methyl orange solution exhibited the highest photocatalytic activity of 98.86% within 240 min of irradiation, which is attributed to the low band gap, high surface area, and the strong interaction between Bi
2
O
3
and TiO
2
.</description><subject>Adsorption</subject><subject>Bismuth oxides</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diffraction</subject><subject>Energy gap</subject><subject>Illumination</subject><subject>Inorganic Chemistry</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Microscopes</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Raman spectroscopy</subject><subject>Research Paper</subject><subject>Scanning electron microscopy</subject><subject>Surface area</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD9PwzAQxSMEEqXwAdgsMYf64jS2R6j4J1WqhIrEZjm206YkcbBd1Ex8dRyVgYXpTnfvvdP9kuQa8C1gTGceAM8hxUBTwnCRHk6SCcxpljJevJ_GnjCWYlrk58mF9zuMoch4Nkm-X00r3YcsG4OUDLIZQq2QVKH-qsOAbIXu62xFZut6laFOdlbZtre-Dsaj3pleOqNROaDtoJ0NW-Na2aDWhK3VqLIOxRHSZuOklqG23Rg4bocGWSe7jblMzirZeHP1W6fJ2-PDevGcLldPL4u7Zapy4CEFGn_ReUkqSnKsJDNc0xKIxhWnUisDUvJ5XnHOsZkDKTBwKFWOScZyYIRMk5tjbu_s5974IHZ277p4UgBjlACNjqiCo0o5670zlehdHfkMArAYOYsjZxE5i5GzOERPdvT4qI0fuT_J_5p-AGDdgfs</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Malligavathy, M.</creator><creator>Iyyapushpam, S.</creator><creator>Nishanthi, S. T.</creator><creator>Pathinettam Padiyan, D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20170401</creationdate><title>Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange</title><author>Malligavathy, M. ; Iyyapushpam, S. ; Nishanthi, S. T. ; Pathinettam Padiyan, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-17572d4b3f7340ca8e9d7b13d0f97adce1aa954f9990e51360191bc4032841833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Bismuth oxides</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diffraction</topic><topic>Energy gap</topic><topic>Illumination</topic><topic>Inorganic Chemistry</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Microscopes</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Raman spectroscopy</topic><topic>Research Paper</topic><topic>Scanning electron microscopy</topic><topic>Surface area</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Malligavathy, M.</creatorcontrib><creatorcontrib>Iyyapushpam, S.</creatorcontrib><creatorcontrib>Nishanthi, S. T.</creatorcontrib><creatorcontrib>Pathinettam Padiyan, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malligavathy, M.</au><au>Iyyapushpam, S.</au><au>Nishanthi, S. T.</au><au>Pathinettam Padiyan, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>19</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>144</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Visible light Bi
2
O
3
/TiO
2
nanocomposites are successfully prepared with different dosages of Bi
2
O
3
by hydrothermal process. All the as-prepared samples are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM), Brunauer-Emmett-Teller analysis (BET), N
2
adsorption-desorption measurement, and UV-Vis diffuse reflectance spectra (DRS). XRD and Raman spectra reveal the anatase phase of both TiO
2
and Bi
2
O
3
/TiO
2
nanocomposites. X-ray diffraction patterns demonstrate that the bismuth ions did not enter into the lattice of TiO
2
, and Bi
2
O
3
is extremely dispersive on the surface of TiO
2
nanoparticles. The incorporation of Bi
2
O
3
in TiO
2
leads to the spectral response of TiO
2
in the visible light region and efficient separation of charge carriers. The enhanced visible light activity is tested by the photocatalytic degradation of methyl orange under light illumination, and the performance of Bi
2
O
3
/TiO
2
nanocomposites are superior than that of pure TiO
2
which is ascribed to the efficient charge separation and transfer across the Bi
2
O
3
/TiO
2
junction. Bi
2
O
3
/TiO
2
nanocomposite (20 mg) loaded with 0.25 of Bi
2
O
3
dispersed in 50 ml of 5 ppm methyl orange solution exhibited the highest photocatalytic activity of 98.86% within 240 min of irradiation, which is attributed to the low band gap, high surface area, and the strong interaction between Bi
2
O
3
and TiO
2
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-017-3806-x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2017-04, Vol.19 (4), p.1, Article 144 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_journals_1887317019 |
source | Springer Nature - Complete Springer Journals |
subjects | Adsorption Bismuth oxides Catalytic activity Characterization and Evaluation of Materials Chemistry and Materials Science Diffraction Energy gap Illumination Inorganic Chemistry Irradiation Lasers Materials Science Microscopes Nanocomposites Nanoparticles Nanotechnology Optical Devices Optics Photocatalysis Photodegradation Photonics Physical Chemistry Raman spectroscopy Research Paper Scanning electron microscopy Surface area Titanium dioxide Transmission electron microscopy X-ray diffraction X-rays |
title | Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remarkable%20catalytic%20activity%20of%20Bi2O3/TiO2%20nanocomposites%20prepared%20by%20hydrothermal%20method%20for%20the%20degradation%20of%20methyl%20orange&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Malligavathy,%20M.&rft.date=2017-04-01&rft.volume=19&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=144&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-017-3806-x&rft_dat=%3Cproquest_cross%3E4321684723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887317019&rft_id=info:pmid/&rfr_iscdi=true |