Spectral clustering based on similarity and dissimilarity criterion
The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimila...
Gespeichert in:
Veröffentlicht in: | Pattern analysis and applications : PAA 2017-05, Vol.20 (2), p.495-506 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 2 |
container_start_page | 495 |
container_title | Pattern analysis and applications : PAA |
container_volume | 20 |
creator | Wang, Bangjun Zhang, Li Wu, Caili Li, Fan-zhang Zhang, Zhao |
description | The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimilarity criterion into the normalized cut criterion. The within-cluster similarity and the between-cluster dissimilarity can be enhanced to result in good clustering performance. Experimental results on toy and real-world datasets show that the new spectral clustering algorithm has a promising performance. |
doi_str_mv | 10.1007/s10044-015-0515-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1885897733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1885897733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-339771ac15bb93ced88ada3a84f76ecae1a826389949ccd3e1db38ae5ef2b0b83</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-hOJttsjlL8BwUPKnhbJrsTSUmTuJtC--3dEpFevLwZhnlvmJ8Q1yBvQcriLkTN81SCSqWKsjsRM8gR00Kpz9O_PodzcRHCWkpEzPRMLN8GtqOnNrHtNozsm-4rqSiwS_ouCc2mack34z6hziWuCUcTGzXu992lOKupDXz1W-fi4_Hhffmcrl6fXpb3q9QiLMYUsSwKIAuqqkq07LQmR0g6r4sFW2IgnS1Ql2VeWuuQwVWoiRXXWSUrjXNxM-UOvv_echjNut_6Lp40oLXSMT5-NRcwbVnfh-C5NoNvNuT3BqQ5sDITKxNZmQMrs4uebPKE4QCA_VHyv6YfQZxuIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885897733</pqid></control><display><type>article</type><title>Spectral clustering based on similarity and dissimilarity criterion</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Bangjun ; Zhang, Li ; Wu, Caili ; Li, Fan-zhang ; Zhang, Zhao</creator><creatorcontrib>Wang, Bangjun ; Zhang, Li ; Wu, Caili ; Li, Fan-zhang ; Zhang, Zhao</creatorcontrib><description>The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimilarity criterion into the normalized cut criterion. The within-cluster similarity and the between-cluster dissimilarity can be enhanced to result in good clustering performance. Experimental results on toy and real-world datasets show that the new spectral clustering algorithm has a promising performance.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-015-0515-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Clustering ; Clusters ; Computer Science ; Criteria ; Pattern Recognition ; Similarity ; Spectra ; Theoretical Advances</subject><ispartof>Pattern analysis and applications : PAA, 2017-05, Vol.20 (2), p.495-506</ispartof><rights>Springer-Verlag London 2015</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-339771ac15bb93ced88ada3a84f76ecae1a826389949ccd3e1db38ae5ef2b0b83</citedby><cites>FETCH-LOGICAL-c316t-339771ac15bb93ced88ada3a84f76ecae1a826389949ccd3e1db38ae5ef2b0b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-015-0515-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-015-0515-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Bangjun</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wu, Caili</creatorcontrib><creatorcontrib>Li, Fan-zhang</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><title>Spectral clustering based on similarity and dissimilarity criterion</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimilarity criterion into the normalized cut criterion. The within-cluster similarity and the between-cluster dissimilarity can be enhanced to result in good clustering performance. Experimental results on toy and real-world datasets show that the new spectral clustering algorithm has a promising performance.</description><subject>Clustering</subject><subject>Clusters</subject><subject>Computer Science</subject><subject>Criteria</subject><subject>Pattern Recognition</subject><subject>Similarity</subject><subject>Spectra</subject><subject>Theoretical Advances</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-hOJttsjlL8BwUPKnhbJrsTSUmTuJtC--3dEpFevLwZhnlvmJ8Q1yBvQcriLkTN81SCSqWKsjsRM8gR00Kpz9O_PodzcRHCWkpEzPRMLN8GtqOnNrHtNozsm-4rqSiwS_ouCc2mack34z6hziWuCUcTGzXu992lOKupDXz1W-fi4_Hhffmcrl6fXpb3q9QiLMYUsSwKIAuqqkq07LQmR0g6r4sFW2IgnS1Ql2VeWuuQwVWoiRXXWSUrjXNxM-UOvv_echjNut_6Lp40oLXSMT5-NRcwbVnfh-C5NoNvNuT3BqQ5sDITKxNZmQMrs4uebPKE4QCA_VHyv6YfQZxuIQ</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Wang, Bangjun</creator><creator>Zhang, Li</creator><creator>Wu, Caili</creator><creator>Li, Fan-zhang</creator><creator>Zhang, Zhao</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>Spectral clustering based on similarity and dissimilarity criterion</title><author>Wang, Bangjun ; Zhang, Li ; Wu, Caili ; Li, Fan-zhang ; Zhang, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-339771ac15bb93ced88ada3a84f76ecae1a826389949ccd3e1db38ae5ef2b0b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clustering</topic><topic>Clusters</topic><topic>Computer Science</topic><topic>Criteria</topic><topic>Pattern Recognition</topic><topic>Similarity</topic><topic>Spectra</topic><topic>Theoretical Advances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bangjun</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wu, Caili</creatorcontrib><creatorcontrib>Li, Fan-zhang</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bangjun</au><au>Zhang, Li</au><au>Wu, Caili</au><au>Li, Fan-zhang</au><au>Zhang, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral clustering based on similarity and dissimilarity criterion</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>20</volume><issue>2</issue><spage>495</spage><epage>506</epage><pages>495-506</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimilarity criterion into the normalized cut criterion. The within-cluster similarity and the between-cluster dissimilarity can be enhanced to result in good clustering performance. Experimental results on toy and real-world datasets show that the new spectral clustering algorithm has a promising performance.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-015-0515-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7541 |
ispartof | Pattern analysis and applications : PAA, 2017-05, Vol.20 (2), p.495-506 |
issn | 1433-7541 1433-755X |
language | eng |
recordid | cdi_proquest_journals_1885897733 |
source | Springer Nature - Complete Springer Journals |
subjects | Clustering Clusters Computer Science Criteria Pattern Recognition Similarity Spectra Theoretical Advances |
title | Spectral clustering based on similarity and dissimilarity criterion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20clustering%20based%20on%20similarity%20and%20dissimilarity%20criterion&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Wang,%20Bangjun&rft.date=2017-05-01&rft.volume=20&rft.issue=2&rft.spage=495&rft.epage=506&rft.pages=495-506&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-015-0515-x&rft_dat=%3Cproquest_cross%3E1885897733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885897733&rft_id=info:pmid/&rfr_iscdi=true |