Spectral clustering based on similarity and dissimilarity criterion

The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2017-05, Vol.20 (2), p.495-506
Hauptverfasser: Wang, Bangjun, Zhang, Li, Wu, Caili, Li, Fan-zhang, Zhang, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimilarity criterion into the normalized cut criterion. The within-cluster similarity and the between-cluster dissimilarity can be enhanced to result in good clustering performance. Experimental results on toy and real-world datasets show that the new spectral clustering algorithm has a promising performance.
ISSN:1433-7541
1433-755X
DOI:10.1007/s10044-015-0515-x