Algebraic resolution of the Burgers equation with a forcing term

We introduce an inhomogeneous term, f ( t , x ), into the right-hand side of the usual Burgers equation and examine the resulting equation for those functions which admit at least one Lie point symmetry. For those functions f ( t , x ) which depend nontrivially on both t and x , we find that there i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pramāṇa 2017-05, Vol.88 (5), p.1-6, Article 74
Hauptverfasser: SINUVASAN, R, TAMIZHMANI, K M, L LEACH, P G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 5
container_start_page 1
container_title Pramāṇa
container_volume 88
creator SINUVASAN, R
TAMIZHMANI, K M
L LEACH, P G
description We introduce an inhomogeneous term, f ( t , x ), into the right-hand side of the usual Burgers equation and examine the resulting equation for those functions which admit at least one Lie point symmetry. For those functions f ( t , x ) which depend nontrivially on both t and x , we find that there is just one symmetry. If f is a function of only x , there are three symmetries with the algebra s l (2, R ). When f is a function of only t , there are five symmetries with the algebra s l (2, R ) ⊕ s 2 A 1 . In all the cases, the Burgers equation is reduced to the equation for a linear oscillator with nonconstant coefficient.
doi_str_mv 10.1007/s12043-017-1382-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1885268137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1885268137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-957253ff61f6e40548426ab32b609b2ef94848cb15cfd410854d4d9e4ef1e5893</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ4mzw-pHYN0rFS6rEBc5Wkq7bVG3c2okQ_x6XcODCaVejmVntR8g18FvgvLxLILiSjEPJQBrB5AmZcFtKVgLAad4lV0wJY8_JRUobzsEqqSfkfrZdYR2rtqERU9gOfRs6Gjzt10gfhrjCmCgehupH_2z7Na2oD7FpuxXtMe4uyZmvtgmvfueUfDw9vs9f2OLt-XU-W7BGQtEzq0uhpfcF-AIV18ooUVS1FHXBbS3Q26yYpgbd-KUCbrRaqqVFhR5QGyun5Gbs3cdwGDD1bhOG2OWTDozRojAgy-yC0dXEkFJE7_ax3VXxywF3R1BuBOUyKHcE5WTOiDGTsrfLD_9p_jf0DS41ab0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885268137</pqid></control><display><type>article</type><title>Algebraic resolution of the Burgers equation with a forcing term</title><source>SpringerNature Journals</source><source>Indian Academy of Sciences</source><creator>SINUVASAN, R ; TAMIZHMANI, K M ; L LEACH, P G</creator><creatorcontrib>SINUVASAN, R ; TAMIZHMANI, K M ; L LEACH, P G</creatorcontrib><description>We introduce an inhomogeneous term, f ( t , x ), into the right-hand side of the usual Burgers equation and examine the resulting equation for those functions which admit at least one Lie point symmetry. For those functions f ( t , x ) which depend nontrivially on both t and x , we find that there is just one symmetry. If f is a function of only x , there are three symmetries with the algebra s l (2, R ). When f is a function of only t , there are five symmetries with the algebra s l (2, R ) ⊕ s 2 A 1 . In all the cases, the Burgers equation is reduced to the equation for a linear oscillator with nonconstant coefficient.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-017-1382-3</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algebra ; Astronomy ; Astrophysics and Astroparticles ; Burgers equation ; Linear equations ; Mathematical analysis ; Observations and Techniques ; Physics ; Physics and Astronomy ; Symmetry</subject><ispartof>Pramāṇa, 2017-05, Vol.88 (5), p.1-6, Article 74</ispartof><rights>Indian Academy of Sciences 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-957253ff61f6e40548426ab32b609b2ef94848cb15cfd410854d4d9e4ef1e5893</citedby><cites>FETCH-LOGICAL-c316t-957253ff61f6e40548426ab32b609b2ef94848cb15cfd410854d4d9e4ef1e5893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12043-017-1382-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12043-017-1382-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>SINUVASAN, R</creatorcontrib><creatorcontrib>TAMIZHMANI, K M</creatorcontrib><creatorcontrib>L LEACH, P G</creatorcontrib><title>Algebraic resolution of the Burgers equation with a forcing term</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>We introduce an inhomogeneous term, f ( t , x ), into the right-hand side of the usual Burgers equation and examine the resulting equation for those functions which admit at least one Lie point symmetry. For those functions f ( t , x ) which depend nontrivially on both t and x , we find that there is just one symmetry. If f is a function of only x , there are three symmetries with the algebra s l (2, R ). When f is a function of only t , there are five symmetries with the algebra s l (2, R ) ⊕ s 2 A 1 . In all the cases, the Burgers equation is reduced to the equation for a linear oscillator with nonconstant coefficient.</description><subject>Algebra</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Burgers equation</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Symmetry</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ4mzw-pHYN0rFS6rEBc5Wkq7bVG3c2okQ_x6XcODCaVejmVntR8g18FvgvLxLILiSjEPJQBrB5AmZcFtKVgLAad4lV0wJY8_JRUobzsEqqSfkfrZdYR2rtqERU9gOfRs6Gjzt10gfhrjCmCgehupH_2z7Na2oD7FpuxXtMe4uyZmvtgmvfueUfDw9vs9f2OLt-XU-W7BGQtEzq0uhpfcF-AIV18ooUVS1FHXBbS3Q26yYpgbd-KUCbrRaqqVFhR5QGyun5Gbs3cdwGDD1bhOG2OWTDozRojAgy-yC0dXEkFJE7_ax3VXxywF3R1BuBOUyKHcE5WTOiDGTsrfLD_9p_jf0DS41ab0</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>SINUVASAN, R</creator><creator>TAMIZHMANI, K M</creator><creator>L LEACH, P G</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>Algebraic resolution of the Burgers equation with a forcing term</title><author>SINUVASAN, R ; TAMIZHMANI, K M ; L LEACH, P G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-957253ff61f6e40548426ab32b609b2ef94848cb15cfd410854d4d9e4ef1e5893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Burgers equation</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SINUVASAN, R</creatorcontrib><creatorcontrib>TAMIZHMANI, K M</creatorcontrib><creatorcontrib>L LEACH, P G</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SINUVASAN, R</au><au>TAMIZHMANI, K M</au><au>L LEACH, P G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic resolution of the Burgers equation with a forcing term</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>88</volume><issue>5</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>74</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>We introduce an inhomogeneous term, f ( t , x ), into the right-hand side of the usual Burgers equation and examine the resulting equation for those functions which admit at least one Lie point symmetry. For those functions f ( t , x ) which depend nontrivially on both t and x , we find that there is just one symmetry. If f is a function of only x , there are three symmetries with the algebra s l (2, R ). When f is a function of only t , there are five symmetries with the algebra s l (2, R ) ⊕ s 2 A 1 . In all the cases, the Burgers equation is reduced to the equation for a linear oscillator with nonconstant coefficient.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-017-1382-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4289
ispartof Pramāṇa, 2017-05, Vol.88 (5), p.1-6, Article 74
issn 0304-4289
0973-7111
language eng
recordid cdi_proquest_journals_1885268137
source SpringerNature Journals; Indian Academy of Sciences
subjects Algebra
Astronomy
Astrophysics and Astroparticles
Burgers equation
Linear equations
Mathematical analysis
Observations and Techniques
Physics
Physics and Astronomy
Symmetry
title Algebraic resolution of the Burgers equation with a forcing term
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20resolution%20of%20the%20Burgers%20equation%20with%20a%20forcing%20term&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=SINUVASAN,%20R&rft.date=2017-05-01&rft.volume=88&rft.issue=5&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=74&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-017-1382-3&rft_dat=%3Cproquest_cross%3E1885268137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885268137&rft_id=info:pmid/&rfr_iscdi=true