Algebraic resolution of the Burgers equation with a forcing term

We introduce an inhomogeneous term, f ( t , x ), into the right-hand side of the usual Burgers equation and examine the resulting equation for those functions which admit at least one Lie point symmetry. For those functions f ( t , x ) which depend nontrivially on both t and x , we find that there i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pramāṇa 2017-05, Vol.88 (5), p.1-6, Article 74
Hauptverfasser: SINUVASAN, R, TAMIZHMANI, K M, L LEACH, P G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce an inhomogeneous term, f ( t , x ), into the right-hand side of the usual Burgers equation and examine the resulting equation for those functions which admit at least one Lie point symmetry. For those functions f ( t , x ) which depend nontrivially on both t and x , we find that there is just one symmetry. If f is a function of only x , there are three symmetries with the algebra s l (2, R ). When f is a function of only t , there are five symmetries with the algebra s l (2, R ) ⊕ s 2 A 1 . In all the cases, the Burgers equation is reduced to the equation for a linear oscillator with nonconstant coefficient.
ISSN:0304-4289
0973-7111
DOI:10.1007/s12043-017-1382-3