Topological complexity of some planar polygon spaces
Let M ¯ n , r denote the space of isometry classes of n -gons in the plane with one side of length r and all others of length 1, and assume that 1 ≤ r < n - 3 and n - r is not an odd integer. Using known results about the mod-2 cohomology ring, we prove that its topological complexity satisfies T...
Gespeichert in:
Veröffentlicht in: | Boletín de la Sociedad Matemática Mexicana 2017-04, Vol.23 (1), p.129-139 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
M
¯
n
,
r
denote the space of isometry classes of
n
-gons in the plane with one side of length
r
and all others of length 1, and assume that
1
≤
r
<
n
-
3
and
n
-
r
is not an odd integer. Using known results about the mod-2 cohomology ring, we prove that its topological complexity satisfies
TC
(
M
¯
n
,
r
)
≥
2
n
-
6
. Since
M
¯
n
,
r
is an
(
n
-
3
)
-manifold,
TC
(
M
¯
n
,
r
)
≤
2
n
-
5
. So our result is within 1 of being optimal. |
---|---|
ISSN: | 1405-213X 2296-4495 |
DOI: | 10.1007/s40590-016-0093-y |