Automorphisms with annihilator condition in prime rings
Let R be a prime ring, I a nonzero ideal of R, and a ∈ R. Suppose that σ is a nontrivial automorphism of R such that a{(σ(x ∘ y))n − (x ∘ y)m} = 0 or a{(σ([x,y]))n − ([x,y])m} = 0 for all x,y ∈ I, where n and m are fixed positive integers. We prove that if char(R) > n + 1 or char(R) = 0, then eit...
Gespeichert in:
Veröffentlicht in: | Acta et commentationes Universitatis Tartuensis de mathematica 2015-12, Vol.19 (2), p.127-132 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a prime ring, I a nonzero ideal of R, and a ∈ R. Suppose that σ is a nontrivial automorphism of R such that a{(σ(x ∘ y))n − (x ∘ y)m} = 0 or a{(σ([x,y]))n − ([x,y])m} = 0 for all x,y ∈ I, where n and m are fixed positive integers. We prove that if char(R) > n + 1 or char(R) = 0, then either a = 0 or R is commutative. |
---|---|
ISSN: | 1406-2283 2228-4699 |
DOI: | 10.12697/ACUTM.2015.19.12 |