Automorphisms with annihilator condition in prime rings

Let R be a prime ring, I a nonzero ideal of R, and a ∈ R. Suppose that σ is a nontrivial automorphism of R such that a{(σ(x ∘ y))n − (x ∘ y)m} = 0 or a{(σ([x,y]))n − ([x,y])m} = 0 for all x,y ∈ I, where n and m are fixed positive integers. We prove that if char(R) > n + 1 or char(R) = 0, then eit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta et commentationes Universitatis Tartuensis de mathematica 2015-12, Vol.19 (2), p.127-132
Hauptverfasser: Bano, Tarannum, Huang, Shuliang, Rehman, Nadeem ur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a prime ring, I a nonzero ideal of R, and a ∈ R. Suppose that σ is a nontrivial automorphism of R such that a{(σ(x ∘ y))n − (x ∘ y)m} = 0 or a{(σ([x,y]))n − ([x,y])m} = 0 for all x,y ∈ I, where n and m are fixed positive integers. We prove that if char(R) > n + 1 or char(R) = 0, then either a = 0 or R is commutative.
ISSN:1406-2283
2228-4699
DOI:10.12697/ACUTM.2015.19.12