Reactive control of isolated unsteady streaks in a laminar boundary layer
This study is motivated by controlling transient growth and subsequent bypass transition of the laminar boundary layer to turbulence. In experiments employing a model problem, an active roughness element is used to introduce steady/unsteady streak disturbances in a Blasius boundary layer. This tract...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2016-05, Vol.795, p.808-846 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study is motivated by controlling transient growth and subsequent bypass transition of the laminar boundary layer to turbulence. In experiments employing a model problem, an active roughness element is used to introduce steady/unsteady streak disturbances in a Blasius boundary layer. This tractable arrangement enables a systematic investigation of the evolution of the disturbances and of potential methods to control them in real time. The control strategy utilizes wall-shear-stress sensors, upstream and downstream of a plasma actuator, as inputs to a model-based controller. The controller is designed using empirical input/output data to determine the parameters of simple models, approximating the boundary layer dynamics. The models are used to tune feedforward and feedback controllers. The control effect is examined over a range of roughness-element heights, free stream velocities, feedback sensor positions, unsteady disturbance frequencies and control strategies; and is found to nearly completely cancel the steady-state disturbance at the downstream sensor location. The control of unsteady disturbances exhibits a limited bandwidth of less than 1.3 Hz. However, concurrent modelling demonstrates that substantially higher bandwidth is achievable by improving the feedforward controller and/or optimizing the feedback sensor location. Moreover, the model analysis shows that the difference in the convective time delay of the roughness- and actuator-induced disturbances over the control domain must be known with high accuracy for effective feedforward control. This poses a limitation for control effectiveness in a stochastic environment, such as in bypass transition beneath a turbulent free stream; nonetheless, feedback can remedy some of this limitation. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2016.200 |