Exact coherent structures at extreme Reynolds number
Exact coherent structures (ECS), unstable three-dimensional solutions of the Navier–Stokes equations, play a fundamental role in transitional and turbulent wall flows. Dempsey et al. (J. Fluid Mech., vol. 791, 2016, pp. 97–121) demonstrate that at large Reynolds number reduced equations can be deriv...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2016-05, Vol.794, p.1-4 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exact coherent structures (ECS), unstable three-dimensional solutions of the Navier–Stokes equations, play a fundamental role in transitional and turbulent wall flows. Dempsey et al. (J. Fluid Mech., vol. 791, 2016, pp. 97–121) demonstrate that at large Reynolds number reduced equations can be derived that simplify the computation and facilitate mechanistic understanding of these solutions. Their analysis shows that ECS in plane Poiseuille flow can be sustained by a novel inner–outer interaction between oblique near-wall Tollmien–Schlichting waves and interior streamwise vortices. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2016.154 |