Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation
The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2015-11, Vol.783, p.46-71 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | |
container_start_page | 46 |
container_title | Journal of fluid mechanics |
container_volume | 783 |
creator | Nejati, Iman Dietzel, Mathias Hardt, Steffen |
description | The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers. |
doi_str_mv | 10.1017/jfm.2015.544 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884330418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_544</cupid><sourcerecordid>4321457179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-e02482a4e74ee1f669079c704ccfcf27019fecf46bce4a74d203b353cb61ba9b3</originalsourceid><addsrcrecordid>eNptkE1OwzAQRi0EEqWw4wCW2JJgJ06csIOKP6mIDawjx5mkjhKntZ1CJBbcgVNwDm7CSUjVLliw-jTSm29GD6FTSnxKKL-oy9YPCI38iLE9NKEsTj0es2gfTQgJAo_SgByiI2trQmhIUj5B77NO130lHBS4UatejSEGMBYXRq1B43zAbgHYLjrjvFexhgZ05Rb4-vtLC1P8fHw-CiN01WmFlbZO5KpRbrjE8LYEo1rQDgtdYN234yhFg61q-0Y41eljdFCKxsLJLqfo5fbmeXbvzZ_uHmZXc0-GnDsPSMCSQDDgDICWcZwSnkpOmJSlLANOaFqCLFmcS2CCsyIgYR5Gocxjmos0D6fobNu7NN2qB-uyuuuNHk9mNElYGBJGk5E631LSdNYaKLPl-L8wQ0ZJtvGbjX6zjd9s9Dvi_g4XbW5UUcGf1v8WfgGRwIIS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884330418</pqid></control><display><type>article</type><title>Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation</title><source>Cambridge University Press Journals Complete</source><creator>Nejati, Iman ; Dietzel, Mathias ; Hardt, Steffen</creator><creatorcontrib>Nejati, Iman ; Dietzel, Mathias ; Hardt, Steffen</creatorcontrib><description>The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.544</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary conditions ; Boundary layer ; Fluid mechanics ; Mathematical models ; Numerical analysis ; Temperature distribution ; Temperature gradients ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2015-11, Vol.783, p.46-71</ispartof><rights>2015 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-e02482a4e74ee1f669079c704ccfcf27019fecf46bce4a74d203b353cb61ba9b3</citedby><cites>FETCH-LOGICAL-c377t-e02482a4e74ee1f669079c704ccfcf27019fecf46bce4a74d203b353cb61ba9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015005443/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Nejati, Iman</creatorcontrib><creatorcontrib>Dietzel, Mathias</creatorcontrib><creatorcontrib>Hardt, Steffen</creatorcontrib><title>Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers.</description><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1OwzAQRi0EEqWw4wCW2JJgJ06csIOKP6mIDawjx5mkjhKntZ1CJBbcgVNwDm7CSUjVLliw-jTSm29GD6FTSnxKKL-oy9YPCI38iLE9NKEsTj0es2gfTQgJAo_SgByiI2trQmhIUj5B77NO130lHBS4UatejSEGMBYXRq1B43zAbgHYLjrjvFexhgZ05Rb4-vtLC1P8fHw-CiN01WmFlbZO5KpRbrjE8LYEo1rQDgtdYN234yhFg61q-0Y41eljdFCKxsLJLqfo5fbmeXbvzZ_uHmZXc0-GnDsPSMCSQDDgDICWcZwSnkpOmJSlLANOaFqCLFmcS2CCsyIgYR5Gocxjmos0D6fobNu7NN2qB-uyuuuNHk9mNElYGBJGk5E631LSdNYaKLPl-L8wQ0ZJtvGbjX6zjd9s9Dvi_g4XbW5UUcGf1v8WfgGRwIIS</recordid><startdate>20151125</startdate><enddate>20151125</enddate><creator>Nejati, Iman</creator><creator>Dietzel, Mathias</creator><creator>Hardt, Steffen</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20151125</creationdate><title>Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation</title><author>Nejati, Iman ; Dietzel, Mathias ; Hardt, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-e02482a4e74ee1f669079c704ccfcf27019fecf46bce4a74d203b353cb61ba9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nejati, Iman</creatorcontrib><creatorcontrib>Dietzel, Mathias</creatorcontrib><creatorcontrib>Hardt, Steffen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nejati, Iman</au><au>Dietzel, Mathias</au><au>Hardt, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-11-25</date><risdate>2015</risdate><volume>783</volume><spage>46</spage><epage>71</epage><pages>46-71</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.544</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2015-11, Vol.783, p.46-71 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1884330418 |
source | Cambridge University Press Journals Complete |
subjects | Boundary conditions Boundary layer Fluid mechanics Mathematical models Numerical analysis Temperature distribution Temperature gradients Viscosity |
title | Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugated%20liquid%20layers%20driven%20by%20the%20short-wavelength%20B%C3%A9nard%E2%80%93Marangoni%20instability:%20experiment%20and%20numerical%20simulation&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Nejati,%20Iman&rft.date=2015-11-25&rft.volume=783&rft.spage=46&rft.epage=71&rft.pages=46-71&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.544&rft_dat=%3Cproquest_cross%3E4321457179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884330418&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_544&rfr_iscdi=true |