Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation

The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2015-11, Vol.783, p.46-71
Hauptverfasser: Nejati, Iman, Dietzel, Mathias, Hardt, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue
container_start_page 46
container_title Journal of fluid mechanics
container_volume 783
creator Nejati, Iman
Dietzel, Mathias
Hardt, Steffen
description The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers.
doi_str_mv 10.1017/jfm.2015.544
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1884330418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_544</cupid><sourcerecordid>4321457179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-e02482a4e74ee1f669079c704ccfcf27019fecf46bce4a74d203b353cb61ba9b3</originalsourceid><addsrcrecordid>eNptkE1OwzAQRi0EEqWw4wCW2JJgJ06csIOKP6mIDawjx5mkjhKntZ1CJBbcgVNwDm7CSUjVLliw-jTSm29GD6FTSnxKKL-oy9YPCI38iLE9NKEsTj0es2gfTQgJAo_SgByiI2trQmhIUj5B77NO130lHBS4UatejSEGMBYXRq1B43zAbgHYLjrjvFexhgZ05Rb4-vtLC1P8fHw-CiN01WmFlbZO5KpRbrjE8LYEo1rQDgtdYN234yhFg61q-0Y41eljdFCKxsLJLqfo5fbmeXbvzZ_uHmZXc0-GnDsPSMCSQDDgDICWcZwSnkpOmJSlLANOaFqCLFmcS2CCsyIgYR5Gocxjmos0D6fobNu7NN2qB-uyuuuNHk9mNElYGBJGk5E631LSdNYaKLPl-L8wQ0ZJtvGbjX6zjd9s9Dvi_g4XbW5UUcGf1v8WfgGRwIIS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884330418</pqid></control><display><type>article</type><title>Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation</title><source>Cambridge University Press Journals Complete</source><creator>Nejati, Iman ; Dietzel, Mathias ; Hardt, Steffen</creator><creatorcontrib>Nejati, Iman ; Dietzel, Mathias ; Hardt, Steffen</creatorcontrib><description>The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.544</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary conditions ; Boundary layer ; Fluid mechanics ; Mathematical models ; Numerical analysis ; Temperature distribution ; Temperature gradients ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2015-11, Vol.783, p.46-71</ispartof><rights>2015 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-e02482a4e74ee1f669079c704ccfcf27019fecf46bce4a74d203b353cb61ba9b3</citedby><cites>FETCH-LOGICAL-c377t-e02482a4e74ee1f669079c704ccfcf27019fecf46bce4a74d203b353cb61ba9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015005443/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Nejati, Iman</creatorcontrib><creatorcontrib>Dietzel, Mathias</creatorcontrib><creatorcontrib>Hardt, Steffen</creatorcontrib><title>Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers.</description><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1OwzAQRi0EEqWw4wCW2JJgJ06csIOKP6mIDawjx5mkjhKntZ1CJBbcgVNwDm7CSUjVLliw-jTSm29GD6FTSnxKKL-oy9YPCI38iLE9NKEsTj0es2gfTQgJAo_SgByiI2trQmhIUj5B77NO130lHBS4UatejSEGMBYXRq1B43zAbgHYLjrjvFexhgZ05Rb4-vtLC1P8fHw-CiN01WmFlbZO5KpRbrjE8LYEo1rQDgtdYN234yhFg61q-0Y41eljdFCKxsLJLqfo5fbmeXbvzZ_uHmZXc0-GnDsPSMCSQDDgDICWcZwSnkpOmJSlLANOaFqCLFmcS2CCsyIgYR5Gocxjmos0D6fobNu7NN2qB-uyuuuNHk9mNElYGBJGk5E631LSdNYaKLPl-L8wQ0ZJtvGbjX6zjd9s9Dvi_g4XbW5UUcGf1v8WfgGRwIIS</recordid><startdate>20151125</startdate><enddate>20151125</enddate><creator>Nejati, Iman</creator><creator>Dietzel, Mathias</creator><creator>Hardt, Steffen</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20151125</creationdate><title>Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation</title><author>Nejati, Iman ; Dietzel, Mathias ; Hardt, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-e02482a4e74ee1f669079c704ccfcf27019fecf46bce4a74d203b353cb61ba9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nejati, Iman</creatorcontrib><creatorcontrib>Dietzel, Mathias</creatorcontrib><creatorcontrib>Hardt, Steffen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nejati, Iman</au><au>Dietzel, Mathias</au><au>Hardt, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-11-25</date><risdate>2015</risdate><volume>783</volume><spage>46</spage><epage>71</epage><pages>46-71</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.544</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2015-11, Vol.783, p.46-71
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1884330418
source Cambridge University Press Journals Complete
subjects Boundary conditions
Boundary layer
Fluid mechanics
Mathematical models
Numerical analysis
Temperature distribution
Temperature gradients
Viscosity
title Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugated%20liquid%20layers%20driven%20by%20the%20short-wavelength%20B%C3%A9nard%E2%80%93Marangoni%20instability:%20experiment%20and%20numerical%20simulation&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Nejati,%20Iman&rft.date=2015-11-25&rft.volume=783&rft.spage=46&rft.epage=71&rft.pages=46-71&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.544&rft_dat=%3Cproquest_cross%3E4321457179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884330418&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_544&rfr_iscdi=true