Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation
The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2015-11, Vol.783, p.46-71 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The coupled dynamics of two conjugated liquid layers of disparate thicknesses, which coat a solid substrate and are subjected to a transverse temperature gradient, is investigated. The upper liquid layer evolves under the short-wavelength Bénard–Marangoni instability, whereas the lower, much thinner film undergoes a shear-driven long-wavelength deformation. Although the lubricating film should reduce the viscous stresses acting on the up to one hundred times thicker upper layer by only 10 %, it is found that the critical Marangoni number of marginal stability may be as low as if a stress-free boundary condition were applied at the bottom of the upper layer, i.e. much lower than the classical value of 79.6 known for a single film. Furthermore, it is experimentally verified that the deformation of the liquid–liquid interface, albeit small, has a non-negligible effect on the temperature distribution along the liquid–gas interface of the upper layer. This stabilizes the hexagonal pattern symmetry towards external disturbances and indicates a two-way coupling of the different layers. The experiments also demonstrate how convection patterns formed in a liquid film can be used to pattern a second conjugated film. The experimental findings are verified by a numerical model of the coupled layers. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2015.544 |