Pseudo-Hermitian Systems with P T -Symmetry: Degeneracy and Krein Space
We show in the present paper that pseudo-Hermitian Hamiltonian systems with even P T -symmetry ( P 2 = 1 , T 2 = 1 ) admit a degeneracy structure. This kind of degeneracy is expected traditionally in the odd P T -symmetric systems ( P 2 = 1 , T 2 = − 1 ) which is appropriate to the fermions (Scolari...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2017-01, Vol.56 (5), p.1595-1604 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show in the present paper that pseudo-Hermitian Hamiltonian systems with even P T -symmetry ( P 2 = 1 , T 2 = 1 ) admit a degeneracy structure. This kind of degeneracy is expected traditionally in the odd P T -symmetric systems ( P 2 = 1 , T 2 = − 1 ) which is appropriate to the fermions (Scolarici and Solombrino, Phys. Lett. A 303, 239 2002; Jones-Smith and Mathur, Phys. Rev. A 82, 042101 2010). We establish that the pseudo-Hermitian Hamiltonians with even P T -symmetry admit a degeneracy structure if the operator P T anticommutes with the metric operator ησ which is necessarily indefinite. We also show that the Krein space formulation of the Hilbert space is the convenient framework for the implementation of unbroken P T -symmetry. These general results are illustrated with great details for four-level pseudo-Hermitian Hamiltonian with even P T -symmetry. |
---|---|
ISSN: | 0020-7748 1572-9575 |
DOI: | 10.1007/s10773-017-3299-5 |