Deep Relative Tracking

Most existing tracking methods are direct trackers, which directly exploit foreground or/and background information for object appearance modeling and decide whether an image patch is target object or not. As a result, these trackers cannot perform well when target appearance changes heavily and bec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-04, Vol.26 (4), p.1845-1858
Hauptverfasser: Gao, Junyu, Zhang, Tianzhu, Yang, Xiaoshan, Xu, Changsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most existing tracking methods are direct trackers, which directly exploit foreground or/and background information for object appearance modeling and decide whether an image patch is target object or not. As a result, these trackers cannot perform well when target appearance changes heavily and becomes different from its model. To deal with this issue, we propose a novel relative tracker, which can effectively exploit the relative relationship among image patches from both foreground and background for object appearance modeling. Different from direct trackers, the proposed relative tracker is robust to localize target object by use of the best image patch with the highest relative score to the target appearance model. To model relative relationship among large-scale image patch pairs, we propose a novel and effective deep relative learning algorithm through the convolutional neural network. We test the proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our method consistently outperforms the state-of-the-art trackers due to the powerful capacity of the proposed deep relative model.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2017.2656628