The number of -points on Dwork hypersurfaces and hypergeometric functions
We provide a formula for the number of F p -points on the Dwork hypersurface x 1 n + x 2 n ⋯ + x n n - n λ x 1 x 2 … x n = 0 in terms of a p -adic hypergeometric function previously defined by the author. This formula holds in the general case, i.e., for any n , λ ∈ F p ∗ and for all odd primes p ,...
Gespeichert in:
Veröffentlicht in: | Research in the mathematical sciences 2017-04, Vol.4 (1), p.1-15, Article 4 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a formula for the number of
F
p
-points on the Dwork hypersurface
x
1
n
+
x
2
n
⋯
+
x
n
n
-
n
λ
x
1
x
2
…
x
n
=
0
in terms of a
p
-adic hypergeometric function previously defined by the author. This formula holds in the general case, i.e., for any
n
,
λ
∈
F
p
∗
and for all odd primes
p
, thus extending results of Goodson and Barman et al. which hold in certain special cases. |
---|---|
ISSN: | 2197-9847 2522-0144 2197-9847 |
DOI: | 10.1186/s40687-017-0096-y |