Inner derivations of simple Lie pencils of rank 1
We prove that simple Lie pencils of rank 1 over an algebraically closed field P of characteristic 0 with operators of left multiplication being derivations are of the form of a sandwich algebra M 3 ( U , D ′), where U is the subspace of all skew-symmetric matrices in M 3 ( P ) and D ′ is any subspac...
Gespeichert in:
Veröffentlicht in: | Russian mathematics 2017-04, Vol.61 (4), p.11-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that simple Lie pencils of rank 1 over an algebraically closed field
P
of characteristic 0 with operators of left multiplication being derivations are of the form of a sandwich algebra
M
3
(
U
,
D
′), where
U
is the subspace of all skew-symmetric matrices in
M
3
(
P
) and
D
′ is any subspace containing 〈
E
〉 in the space of all diagonal matrices
D
in
M
3
(
P
). |
---|---|
ISSN: | 1066-369X 1934-810X |
DOI: | 10.3103/S1066369X1704003X |