Inner derivations of simple Lie pencils of rank 1

We prove that simple Lie pencils of rank 1 over an algebraically closed field P of characteristic 0 with operators of left multiplication being derivations are of the form of a sandwich algebra M 3 ( U , D ′), where U is the subspace of all skew-symmetric matrices in M 3 ( P ) and D ′ is any subspac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2017-04, Vol.61 (4), p.11-17
1. Verfasser: Koreshkov, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that simple Lie pencils of rank 1 over an algebraically closed field P of characteristic 0 with operators of left multiplication being derivations are of the form of a sandwich algebra M 3 ( U , D ′), where U is the subspace of all skew-symmetric matrices in M 3 ( P ) and D ′ is any subspace containing 〈 E 〉 in the space of all diagonal matrices D in M 3 ( P ).
ISSN:1066-369X
1934-810X
DOI:10.3103/S1066369X1704003X