Bootstrap for Local Rigidity of Anosov Automorphisms on the 3-Torus
We establish a strong form of local rigidity for hyperbolic automorphisms of the 3-torus with real spectrum. Namely, let L : T 3 → T 3 be a hyperbolic automorphism of the 3-torus with real spectrum and let f be a C 1 small perturbation of L . Then f is smoothly ( C ∞ ) conjugate to L if and only if...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-06, Vol.352 (2), p.439-455 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a strong form of local rigidity for hyperbolic automorphisms of the 3-torus with real spectrum. Namely, let
L
:
T
3
→
T
3
be a hyperbolic automorphism of the 3-torus with real spectrum and let
f
be a
C
1
small perturbation of
L
. Then
f
is smoothly (
C
∞
) conjugate to
L
if and only if obstructions to
C
1
conjugacy given by the eigenvalues at periodic points of
f
vanish. By combining our result and a local rigidity result of Kalinin and Sadovskaya (Ergod Theory Dyn Syst 29:117–136,
2009
) for conformal automorphisms this completes the local rigidity program for hyperbolic automorphisms in dimension 3. Our work extends de la Llave–Marco–Moriyón 2-dimensional local rigidity theory (Commun Math Phys 109:368–378,
1987
; Ergod Theory Dyn Syst 17(3):649–662,
1997
; Commun Math Phys 109(4):681–689,
1987
). |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-017-2863-4 |