Cayley graphs on abelian groups
Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a −1 . A Cayley graph Γ = Cay( A,S ) is said to have an automorphism group as small as possible if Aut(Γ)=A⋊. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as pos...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2016-08, Vol.36 (4), p.371-393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | 4 |
container_start_page | 371 |
container_title | Combinatorica (Budapest. 1981) |
container_volume | 36 |
creator | Dobson, Edward Spiga, Pablo Verret, Gabriel |
description | Let
A
be an abelian group and let ι be the automorphism of
A
defined by: ι: a ↦ a
−1
. A Cayley graph Γ = Cay(
A,S
) is said to have an automorphism group
as small as possible
if Aut(Γ)=A⋊. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil. |
doi_str_mv | 10.1007/s00493-015-3136-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880883745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880883745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6b65450aa76f340c7c2a7096af590faf7976189988d1c2ea227d39ec110db3593</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEd_gCsLrqP3Js1rKcUXDLjRdUjbZJyhtjWZLvrvbakLN64uHM53LnyEXCPcIYC6TwCF4RRQUI5cUnFCMiy4odIgOyUZMDDUSM3PyUVKBwDQHEVGbko3tX7Kd9ENnynvu9xVvt27bk76cUiX5Cy4Nvmr37shH0-P7-UL3b49v5YPW1pzlEcqKykKAc4pGXgBtaqZU2CkC8JAcEEZJVEbo3WDNfOOMdVw42tEaCouDN-Q23V3iP336NPRHvoxdvNLi1qD1lwVYm7h2qpjn1L0wQ5x_-XiZBHs4sGuHuzswS4e7MKwlUlzt9v5-Gf5X-gHYyJdXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880883745</pqid></control><display><type>article</type><title>Cayley graphs on abelian groups</title><source>SpringerNature Journals</source><creator>Dobson, Edward ; Spiga, Pablo ; Verret, Gabriel</creator><creatorcontrib>Dobson, Edward ; Spiga, Pablo ; Verret, Gabriel</creatorcontrib><description>Let
A
be an abelian group and let ι be the automorphism of
A
defined by: ι: a ↦ a
−1
. A Cayley graph Γ = Cay(
A,S
) is said to have an automorphism group
as small as possible
if Aut(Γ)=A⋊<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil.</description><identifier>ISSN: 0209-9683</identifier><identifier>EISSN: 1439-6912</identifier><identifier>DOI: 10.1007/s00493-015-3136-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Combinatorics ; Graphs ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Combinatorica (Budapest. 1981), 2016-08, Vol.36 (4), p.371-393</ispartof><rights>János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6b65450aa76f340c7c2a7096af590faf7976189988d1c2ea227d39ec110db3593</citedby><cites>FETCH-LOGICAL-c316t-6b65450aa76f340c7c2a7096af590faf7976189988d1c2ea227d39ec110db3593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00493-015-3136-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00493-015-3136-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dobson, Edward</creatorcontrib><creatorcontrib>Spiga, Pablo</creatorcontrib><creatorcontrib>Verret, Gabriel</creatorcontrib><title>Cayley graphs on abelian groups</title><title>Combinatorica (Budapest. 1981)</title><addtitle>Combinatorica</addtitle><description>Let
A
be an abelian group and let ι be the automorphism of
A
defined by: ι: a ↦ a
−1
. A Cayley graph Γ = Cay(
A,S
) is said to have an automorphism group
as small as possible
if Aut(Γ)=A⋊<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil.</description><subject>Combinatorics</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0209-9683</issn><issn>1439-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEd_gCsLrqP3Js1rKcUXDLjRdUjbZJyhtjWZLvrvbakLN64uHM53LnyEXCPcIYC6TwCF4RRQUI5cUnFCMiy4odIgOyUZMDDUSM3PyUVKBwDQHEVGbko3tX7Kd9ENnynvu9xVvt27bk76cUiX5Cy4Nvmr37shH0-P7-UL3b49v5YPW1pzlEcqKykKAc4pGXgBtaqZU2CkC8JAcEEZJVEbo3WDNfOOMdVw42tEaCouDN-Q23V3iP336NPRHvoxdvNLi1qD1lwVYm7h2qpjn1L0wQ5x_-XiZBHs4sGuHuzswS4e7MKwlUlzt9v5-Gf5X-gHYyJdXg</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Dobson, Edward</creator><creator>Spiga, Pablo</creator><creator>Verret, Gabriel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160801</creationdate><title>Cayley graphs on abelian groups</title><author>Dobson, Edward ; Spiga, Pablo ; Verret, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6b65450aa76f340c7c2a7096af590faf7976189988d1c2ea227d39ec110db3593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Combinatorics</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobson, Edward</creatorcontrib><creatorcontrib>Spiga, Pablo</creatorcontrib><creatorcontrib>Verret, Gabriel</creatorcontrib><collection>CrossRef</collection><jtitle>Combinatorica (Budapest. 1981)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobson, Edward</au><au>Spiga, Pablo</au><au>Verret, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cayley graphs on abelian groups</atitle><jtitle>Combinatorica (Budapest. 1981)</jtitle><stitle>Combinatorica</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>36</volume><issue>4</issue><spage>371</spage><epage>393</epage><pages>371-393</pages><issn>0209-9683</issn><eissn>1439-6912</eissn><abstract>Let
A
be an abelian group and let ι be the automorphism of
A
defined by: ι: a ↦ a
−1
. A Cayley graph Γ = Cay(
A,S
) is said to have an automorphism group
as small as possible
if Aut(Γ)=A⋊<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00493-015-3136-5</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0209-9683 |
ispartof | Combinatorica (Budapest. 1981), 2016-08, Vol.36 (4), p.371-393 |
issn | 0209-9683 1439-6912 |
language | eng |
recordid | cdi_proquest_journals_1880883745 |
source | SpringerNature Journals |
subjects | Combinatorics Graphs Mathematics Mathematics and Statistics Original Paper |
title | Cayley graphs on abelian groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cayley%20graphs%20on%20abelian%20groups&rft.jtitle=Combinatorica%20(Budapest.%201981)&rft.au=Dobson,%20Edward&rft.date=2016-08-01&rft.volume=36&rft.issue=4&rft.spage=371&rft.epage=393&rft.pages=371-393&rft.issn=0209-9683&rft.eissn=1439-6912&rft_id=info:doi/10.1007/s00493-015-3136-5&rft_dat=%3Cproquest_cross%3E1880883745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880883745&rft_id=info:pmid/&rfr_iscdi=true |