Cayley graphs on abelian groups

Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a −1 . A Cayley graph Γ = Cay( A,S ) is said to have an automorphism group as small as possible if Aut(Γ)=A⋊. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2016-08, Vol.36 (4), p.371-393
Hauptverfasser: Dobson, Edward, Spiga, Pablo, Verret, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a −1 . A Cayley graph Γ = Cay( A,S ) is said to have an automorphism group as small as possible if Aut(Γ)=A⋊. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil.
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-015-3136-5