Cayley graphs on abelian groups
Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a −1 . A Cayley graph Γ = Cay( A,S ) is said to have an automorphism group as small as possible if Aut(Γ)=A⋊. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as pos...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2016-08, Vol.36 (4), p.371-393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
be an abelian group and let ι be the automorphism of
A
defined by: ι: a ↦ a
−1
. A Cayley graph Γ = Cay(
A,S
) is said to have an automorphism group
as small as possible
if Aut(Γ)=A⋊. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil. |
---|---|
ISSN: | 0209-9683 1439-6912 |
DOI: | 10.1007/s00493-015-3136-5 |