Łojasiewicz exponents and Farey sequences

Let I be an ideal of the ring of formal power series K [ [ x , y ] ] with coefficients in an algebraically closed field K of arbitrary characteristic. Let Φ denote the set of all parametrizations φ = ( φ 1 , φ 2 ) ∈ K [ [ t ] ] 2 , where φ ≠ ( 0 , 0 ) and φ ( 0 , 0 ) = ( 0 , 0 ) . The purpose of thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática complutense 2016-09, Vol.29 (3), p.719-724
Hauptverfasser: de Felipe, A. B., García Barroso, E. R., Gwoździewicz, J., Płoski, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 3
container_start_page 719
container_title Revista matemática complutense
container_volume 29
creator de Felipe, A. B.
García Barroso, E. R.
Gwoździewicz, J.
Płoski, A.
description Let I be an ideal of the ring of formal power series K [ [ x , y ] ] with coefficients in an algebraically closed field K of arbitrary characteristic. Let Φ denote the set of all parametrizations φ = ( φ 1 , φ 2 ) ∈ K [ [ t ] ] 2 , where φ ≠ ( 0 , 0 ) and φ ( 0 , 0 ) = ( 0 , 0 ) . The purpose of this paper is to investigate the invariant L 0 ( I ) = sup φ ∈ Φ inf f ∈ I ord f ∘ φ ord φ called the Łojasiewicz exponent of I . Our main result states that for the ideals I of finite codimension the Łojasiewicz exponent L 0 ( I ) is a Farey number i.e. an integer or a rational number of the form N + b a , where a ,  b ,  N are integers such that 0 < b < a < N .
doi_str_mv 10.1007/s13163-016-0194-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880882906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880882906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-aeece1318657124f8cc9ff69bfa7055997738ea5f3da1e328a96e85d714344793</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWKsP4G3BmxDNbLLJ5CjFqlDwoucQ04nsors1adF68-F8L1PWgxcP8-fwffMNP8ZOQVyAEOYygwQtuQBdyioOe2wCFpHXKMx-2UFaXhoesqOcOyEaq1BN2Pn319D53NJ7Gz4r-lgNPfXrXPl-Wc19om2V6W1DfaB8zA6if8l08jun7HF-_TC75Yv7m7vZ1YKHWuOae6JA5RvUjYFaRQzBxqjtU_RGNI21xkgk30S59ECyRm81YbM0oKRSxsopOxvvrtJQovPadcMm9SXSAaJArK3QRQWjKqQh50TRrVL76tPWgXA7JG5E4goSt0PioHjq0ZOLtn-m9Ofyv6Yf-_Zi2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880882906</pqid></control><display><type>article</type><title>Łojasiewicz exponents and Farey sequences</title><source>Universidad Complutense de Madrid Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>de Felipe, A. B. ; García Barroso, E. R. ; Gwoździewicz, J. ; Płoski, A.</creator><creatorcontrib>de Felipe, A. B. ; García Barroso, E. R. ; Gwoździewicz, J. ; Płoski, A.</creatorcontrib><description>Let I be an ideal of the ring of formal power series K [ [ x , y ] ] with coefficients in an algebraically closed field K of arbitrary characteristic. Let Φ denote the set of all parametrizations φ = ( φ 1 , φ 2 ) ∈ K [ [ t ] ] 2 , where φ ≠ ( 0 , 0 ) and φ ( 0 , 0 ) = ( 0 , 0 ) . The purpose of this paper is to investigate the invariant L 0 ( I ) = sup φ ∈ Φ inf f ∈ I ord f ∘ φ ord φ called the Łojasiewicz exponent of I . Our main result states that for the ideals I of finite codimension the Łojasiewicz exponent L 0 ( I ) is a Farey number i.e. an integer or a rational number of the form N + b a , where a ,  b ,  N are integers such that 0 &lt; b &lt; a &lt; N .</description><identifier>ISSN: 1139-1138</identifier><identifier>EISSN: 1988-2807</identifier><identifier>DOI: 10.1007/s13163-016-0194-1</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Integers ; Mathematics ; Mathematics and Statistics ; Power series ; Sequences ; Topology</subject><ispartof>Revista matemática complutense, 2016-09, Vol.29 (3), p.719-724</ispartof><rights>European union 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-aeece1318657124f8cc9ff69bfa7055997738ea5f3da1e328a96e85d714344793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13163-016-0194-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13163-016-0194-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Felipe, A. B.</creatorcontrib><creatorcontrib>García Barroso, E. R.</creatorcontrib><creatorcontrib>Gwoździewicz, J.</creatorcontrib><creatorcontrib>Płoski, A.</creatorcontrib><title>Łojasiewicz exponents and Farey sequences</title><title>Revista matemática complutense</title><addtitle>Rev Mat Complut</addtitle><description>Let I be an ideal of the ring of formal power series K [ [ x , y ] ] with coefficients in an algebraically closed field K of arbitrary characteristic. Let Φ denote the set of all parametrizations φ = ( φ 1 , φ 2 ) ∈ K [ [ t ] ] 2 , where φ ≠ ( 0 , 0 ) and φ ( 0 , 0 ) = ( 0 , 0 ) . The purpose of this paper is to investigate the invariant L 0 ( I ) = sup φ ∈ Φ inf f ∈ I ord f ∘ φ ord φ called the Łojasiewicz exponent of I . Our main result states that for the ideals I of finite codimension the Łojasiewicz exponent L 0 ( I ) is a Farey number i.e. an integer or a rational number of the form N + b a , where a ,  b ,  N are integers such that 0 &lt; b &lt; a &lt; N .</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Power series</subject><subject>Sequences</subject><subject>Topology</subject><issn>1139-1138</issn><issn>1988-2807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxoMoWKsP4G3BmxDNbLLJ5CjFqlDwoucQ04nsors1adF68-F8L1PWgxcP8-fwffMNP8ZOQVyAEOYygwQtuQBdyioOe2wCFpHXKMx-2UFaXhoesqOcOyEaq1BN2Pn319D53NJ7Gz4r-lgNPfXrXPl-Wc19om2V6W1DfaB8zA6if8l08jun7HF-_TC75Yv7m7vZ1YKHWuOae6JA5RvUjYFaRQzBxqjtU_RGNI21xkgk30S59ECyRm81YbM0oKRSxsopOxvvrtJQovPadcMm9SXSAaJArK3QRQWjKqQh50TRrVL76tPWgXA7JG5E4goSt0PioHjq0ZOLtn-m9Ofyv6Yf-_Zi2g</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>de Felipe, A. B.</creator><creator>García Barroso, E. R.</creator><creator>Gwoździewicz, J.</creator><creator>Płoski, A.</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Łojasiewicz exponents and Farey sequences</title><author>de Felipe, A. B. ; García Barroso, E. R. ; Gwoździewicz, J. ; Płoski, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-aeece1318657124f8cc9ff69bfa7055997738ea5f3da1e328a96e85d714344793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Power series</topic><topic>Sequences</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Felipe, A. B.</creatorcontrib><creatorcontrib>García Barroso, E. R.</creatorcontrib><creatorcontrib>Gwoździewicz, J.</creatorcontrib><creatorcontrib>Płoski, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Revista matemática complutense</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Felipe, A. B.</au><au>García Barroso, E. R.</au><au>Gwoździewicz, J.</au><au>Płoski, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Łojasiewicz exponents and Farey sequences</atitle><jtitle>Revista matemática complutense</jtitle><stitle>Rev Mat Complut</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>29</volume><issue>3</issue><spage>719</spage><epage>724</epage><pages>719-724</pages><issn>1139-1138</issn><eissn>1988-2807</eissn><abstract>Let I be an ideal of the ring of formal power series K [ [ x , y ] ] with coefficients in an algebraically closed field K of arbitrary characteristic. Let Φ denote the set of all parametrizations φ = ( φ 1 , φ 2 ) ∈ K [ [ t ] ] 2 , where φ ≠ ( 0 , 0 ) and φ ( 0 , 0 ) = ( 0 , 0 ) . The purpose of this paper is to investigate the invariant L 0 ( I ) = sup φ ∈ Φ inf f ∈ I ord f ∘ φ ord φ called the Łojasiewicz exponent of I . Our main result states that for the ideals I of finite codimension the Łojasiewicz exponent L 0 ( I ) is a Farey number i.e. an integer or a rational number of the form N + b a , where a ,  b ,  N are integers such that 0 &lt; b &lt; a &lt; N .</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s13163-016-0194-1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1139-1138
ispartof Revista matemática complutense, 2016-09, Vol.29 (3), p.719-724
issn 1139-1138
1988-2807
language eng
recordid cdi_proquest_journals_1880882906
source Universidad Complutense de Madrid Free Journals; SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Geometry
Integers
Mathematics
Mathematics and Statistics
Power series
Sequences
Topology
title Łojasiewicz exponents and Farey sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%C5%81ojasiewicz%20exponents%20and%20Farey%20sequences&rft.jtitle=Revista%20matem%C3%A1tica%20complutense&rft.au=de%20Felipe,%20A.%20B.&rft.date=2016-09-01&rft.volume=29&rft.issue=3&rft.spage=719&rft.epage=724&rft.pages=719-724&rft.issn=1139-1138&rft.eissn=1988-2807&rft_id=info:doi/10.1007/s13163-016-0194-1&rft_dat=%3Cproquest_cross%3E1880882906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880882906&rft_id=info:pmid/&rfr_iscdi=true