Łojasiewicz exponents and Farey sequences
Let I be an ideal of the ring of formal power series K [ [ x , y ] ] with coefficients in an algebraically closed field K of arbitrary characteristic. Let Φ denote the set of all parametrizations φ = ( φ 1 , φ 2 ) ∈ K [ [ t ] ] 2 , where φ ≠ ( 0 , 0 ) and φ ( 0 , 0 ) = ( 0 , 0 ) . The purpose of thi...
Gespeichert in:
Veröffentlicht in: | Revista matemática complutense 2016-09, Vol.29 (3), p.719-724 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
I
be an ideal of the ring of formal power series
K
[
[
x
,
y
]
]
with coefficients in an algebraically closed field
K
of arbitrary characteristic. Let
Φ
denote the set of all parametrizations
φ
=
(
φ
1
,
φ
2
)
∈
K
[
[
t
]
]
2
, where
φ
≠
(
0
,
0
)
and
φ
(
0
,
0
)
=
(
0
,
0
)
. The purpose of this paper is to investigate the invariant
L
0
(
I
)
=
sup
φ
∈
Φ
inf
f
∈
I
ord
f
∘
φ
ord
φ
called the
Łojasiewicz exponent
of
I
. Our main result states that for the ideals
I
of finite codimension the Łojasiewicz exponent
L
0
(
I
)
is a Farey number i.e. an integer or a rational number of the form
N
+
b
a
, where
a
,
b
,
N
are integers such that
0
<
b
<
a
<
N
. |
---|---|
ISSN: | 1139-1138 1988-2807 |
DOI: | 10.1007/s13163-016-0194-1 |