Counting curves in hyperbolic surfaces

Let Σ be a hyperbolic surface. We study the set of curves on Σ of a given type, i.e. in the mapping class group orbit of some fixed but otherwise arbitrary γ 0 . For example, in the particular case that Σ is a once-punctured torus, we prove that the cardinality of the set of curves of type γ 0 and o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric And Functional Analysis 2016-06, Vol.26 (3), p.729-777
Hauptverfasser: Erlandsson, Viveka, Souto, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Σ be a hyperbolic surface. We study the set of curves on Σ of a given type, i.e. in the mapping class group orbit of some fixed but otherwise arbitrary γ 0 . For example, in the particular case that Σ is a once-punctured torus, we prove that the cardinality of the set of curves of type γ 0 and of at most length L is asymptotic to L 2 times a constant.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-016-0374-7