Counting curves in hyperbolic surfaces
Let Σ be a hyperbolic surface. We study the set of curves on Σ of a given type, i.e. in the mapping class group orbit of some fixed but otherwise arbitrary γ 0 . For example, in the particular case that Σ is a once-punctured torus, we prove that the cardinality of the set of curves of type γ 0 and o...
Gespeichert in:
Veröffentlicht in: | Geometric And Functional Analysis 2016-06, Vol.26 (3), p.729-777 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
Σ
be a hyperbolic surface. We study the set of curves on
Σ
of a given type, i.e. in the mapping class group orbit of some fixed but otherwise arbitrary
γ
0
. For example, in the particular case that
Σ
is a once-punctured torus, we prove that the cardinality of the set of curves of type
γ
0
and of at most length
L
is asymptotic to
L
2
times a constant. |
---|---|
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-016-0374-7 |