Non-Universality of Nodal Length Distribution for Arithmetic Random Waves
“Arithmetic random waves” are the Gaussian Laplace eigenfunctions on the two-dimensional torus (Rudnick and Wigman in Annales de l’Insitute Henri Poincaré 9(1):109–130, 2008 ; Krishnapur et al. in Annals of Mathematics (2) 177(2):699–737, 2013 ). In this paper we find that their nodal length converg...
Gespeichert in:
Veröffentlicht in: | Geometric and functional analysis 2016-06, Vol.26 (3), p.926-960 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | “Arithmetic random waves” are the Gaussian Laplace eigenfunctions on the two-dimensional torus (Rudnick and Wigman in Annales de l’Insitute Henri Poincaré 9(1):109–130,
2008
; Krishnapur et al. in Annals of Mathematics (2) 177(2):699–737,
2013
). In this paper we find that their nodal length converges to a non-universal (non-Gaussian) limiting distribution, depending on the angular distribution of lattice points lying on circles. Our argument has two main ingredients. An explicit derivation of the Wiener–Itô chaos expansion for the nodal length shows that it is dominated by its 4th order chaos component (in particular, somewhat surprisingly, the second order chaos component vanishes). The rest of the argument relies on the precise analysis of the fourth order chaotic component. |
---|---|
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-016-0376-5 |