Removal of Phase Transition in the Chebyshev Quadratic and Thermodynamics for Hénon-Like Maps Near the First Bifurcation
It is well-known that the geometric pressure function t ∈ R ↦ sup μ h μ ( T 2 ) - t ∫ log | d T 2 ( x ) | d μ ( x ) of the Chebyshev quadratic map T 2 ( x ) = 1 - 2 x 2 ( x ∈ R ) is not differentiable at t = - 1 . We show that this phase transition can be “removed”, by an arbitrarily small singular...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2016-09, Vol.164 (6), p.1354-1378 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well-known that the geometric pressure function
t
∈
R
↦
sup
μ
h
μ
(
T
2
)
-
t
∫
log
|
d
T
2
(
x
)
|
d
μ
(
x
)
of the Chebyshev quadratic map
T
2
(
x
)
=
1
-
2
x
2
(
x
∈
R
)
is not differentiable at
t
=
-
1
. We show that this phase transition can be “removed”, by an arbitrarily small singular perturbation of the map
T
2
into Hénon-like diffeomorphisms. A proof of this result relies on an elaboration of the well-known inducing techniques adapted to Hénon-like dynamics near the first bifurcation. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-016-1584-y |