Removal of Phase Transition in the Chebyshev Quadratic and Thermodynamics for Hénon-Like Maps Near the First Bifurcation

It is well-known that the geometric pressure function t ∈ R ↦ sup μ h μ ( T 2 ) - t ∫ log | d T 2 ( x ) | d μ ( x ) of the Chebyshev quadratic map T 2 ( x ) = 1 - 2 x 2 ( x ∈ R ) is not differentiable at t = - 1 . We show that this phase transition can be “removed”, by an arbitrarily small singular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2016-09, Vol.164 (6), p.1354-1378
1. Verfasser: Takahasi, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well-known that the geometric pressure function t ∈ R ↦ sup μ h μ ( T 2 ) - t ∫ log | d T 2 ( x ) | d μ ( x ) of the Chebyshev quadratic map T 2 ( x ) = 1 - 2 x 2 ( x ∈ R ) is not differentiable at t = - 1 . We show that this phase transition can be “removed”, by an arbitrarily small singular perturbation of the map T 2 into Hénon-like diffeomorphisms. A proof of this result relies on an elaboration of the well-known inducing techniques adapted to Hénon-like dynamics near the first bifurcation.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-016-1584-y