On stable Baire classes

We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps f : X → Y of the class α for wide classes of topological spaces. In particular, we prove that for a topological space X and a contractible space Y a map f : X → Y belongs to the n th stable B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2016-10, Vol.150 (1), p.36-48
Hauptverfasser: Karlova, O., Mykhaylyuk, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 36
container_title Acta mathematica Hungarica
container_volume 150
creator Karlova, O.
Mykhaylyuk, V.
description We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps f : X → Y of the class α for wide classes of topological spaces. In particular, we prove that for a topological space X and a contractible space Y a map f : X → Y belongs to the n th stable Baire class if and only if there exist a sequence ( f k ) k = 1 ∞ of continuous maps f k : X → Y and a sequence ( F k ) k = 1 ∞ of functionally ambiguous sets of the n th class in X such that f | F k = f k | F k for every k . Moreover, we show that every monotone function f : R → R is of the α th stable Baire class if and only if it belongs to the first stable Baire class.
doi_str_mv 10.1007/s10474-016-0636-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880877069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880877069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9d0daaa59793af9b04ea8e6bead852102ac01cb552ee67c3033903e8cdfee7bb3</originalsourceid><addsrcrecordid>eNp1jz1PwzAURS0EEqEwI7ZIzIZnO_4aoaKAVKkLzJbtvKBWISl2OvDvcRUGFqYnXd1znw4hNwzuGIC-zwwa3VBgioISipoTUjFpDOVK8FNSAS-h5LY5Jxc57wBACmgqcr0Z6jz50GP96LcJ69j7nDFfkrPO9xmvfu-CvK-e3pYvdL15fl0-rGkUTE3UttB676XVVvjOBmjQG1QBfWskZ8B9BBaDlBxR6ShACAsCTWw7RB2CWJDbeXefxq8D5sntxkMaykvHjAGjNShbWmxuxTTmnLBz-7T99OnbMXBHfzf7u-Lvjv7OFIbPTC7d4QPTn-V_oR-KFFul</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880877069</pqid></control><display><type>article</type><title>On stable Baire classes</title><source>SpringerNature Journals</source><creator>Karlova, O. ; Mykhaylyuk, V.</creator><creatorcontrib>Karlova, O. ; Mykhaylyuk, V.</creatorcontrib><description>We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps f : X → Y of the class α for wide classes of topological spaces. In particular, we prove that for a topological space X and a contractible space Y a map f : X → Y belongs to the n th stable Baire class if and only if there exist a sequence ( f k ) k = 1 ∞ of continuous maps f k : X → Y and a sequence ( F k ) k = 1 ∞ of functionally ambiguous sets of the n th class in X such that f | F k = f k | F k for every k . Moreover, we show that every monotone function f : R → R is of the α th stable Baire class if and only if it belongs to the first stable Baire class.</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-016-0636-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adhesives ; Continuity (mathematics) ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica Hungarica, 2016-10, Vol.150 (1), p.36-48</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9d0daaa59793af9b04ea8e6bead852102ac01cb552ee67c3033903e8cdfee7bb3</citedby><cites>FETCH-LOGICAL-c316t-9d0daaa59793af9b04ea8e6bead852102ac01cb552ee67c3033903e8cdfee7bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10474-016-0636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10474-016-0636-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Karlova, O.</creatorcontrib><creatorcontrib>Mykhaylyuk, V.</creatorcontrib><title>On stable Baire classes</title><title>Acta mathematica Hungarica</title><addtitle>Acta Math. Hungar</addtitle><description>We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps f : X → Y of the class α for wide classes of topological spaces. In particular, we prove that for a topological space X and a contractible space Y a map f : X → Y belongs to the n th stable Baire class if and only if there exist a sequence ( f k ) k = 1 ∞ of continuous maps f k : X → Y and a sequence ( F k ) k = 1 ∞ of functionally ambiguous sets of the n th class in X such that f | F k = f k | F k for every k . Moreover, we show that every monotone function f : R → R is of the α th stable Baire class if and only if it belongs to the first stable Baire class.</description><subject>Adhesives</subject><subject>Continuity (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAURS0EEqEwI7ZIzIZnO_4aoaKAVKkLzJbtvKBWISl2OvDvcRUGFqYnXd1znw4hNwzuGIC-zwwa3VBgioISipoTUjFpDOVK8FNSAS-h5LY5Jxc57wBACmgqcr0Z6jz50GP96LcJ69j7nDFfkrPO9xmvfu-CvK-e3pYvdL15fl0-rGkUTE3UttB676XVVvjOBmjQG1QBfWskZ8B9BBaDlBxR6ShACAsCTWw7RB2CWJDbeXefxq8D5sntxkMaykvHjAGjNShbWmxuxTTmnLBz-7T99OnbMXBHfzf7u-Lvjv7OFIbPTC7d4QPTn-V_oR-KFFul</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Karlova, O.</creator><creator>Mykhaylyuk, V.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>On stable Baire classes</title><author>Karlova, O. ; Mykhaylyuk, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9d0daaa59793af9b04ea8e6bead852102ac01cb552ee67c3033903e8cdfee7bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adhesives</topic><topic>Continuity (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlova, O.</creatorcontrib><creatorcontrib>Mykhaylyuk, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlova, O.</au><au>Mykhaylyuk, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On stable Baire classes</atitle><jtitle>Acta mathematica Hungarica</jtitle><stitle>Acta Math. Hungar</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>150</volume><issue>1</issue><spage>36</spage><epage>48</epage><pages>36-48</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps f : X → Y of the class α for wide classes of topological spaces. In particular, we prove that for a topological space X and a contractible space Y a map f : X → Y belongs to the n th stable Baire class if and only if there exist a sequence ( f k ) k = 1 ∞ of continuous maps f k : X → Y and a sequence ( F k ) k = 1 ∞ of functionally ambiguous sets of the n th class in X such that f | F k = f k | F k for every k . Moreover, we show that every monotone function f : R → R is of the α th stable Baire class if and only if it belongs to the first stable Baire class.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10474-016-0636-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0236-5294
ispartof Acta mathematica Hungarica, 2016-10, Vol.150 (1), p.36-48
issn 0236-5294
1588-2632
language eng
recordid cdi_proquest_journals_1880877069
source SpringerNature Journals
subjects Adhesives
Continuity (mathematics)
Mathematics
Mathematics and Statistics
title On stable Baire classes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20stable%20Baire%20classes&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=Karlova,%20O.&rft.date=2016-10-01&rft.volume=150&rft.issue=1&rft.spage=36&rft.epage=48&rft.pages=36-48&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-016-0636-8&rft_dat=%3Cproquest_cross%3E1880877069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880877069&rft_id=info:pmid/&rfr_iscdi=true