On stable Baire classes

We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps f : X → Y of the class α for wide classes of topological spaces. In particular, we prove that for a topological space X and a contractible space Y a map f : X → Y belongs to the n th stable B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2016-10, Vol.150 (1), p.36-48
Hauptverfasser: Karlova, O., Mykhaylyuk, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps f : X → Y of the class α for wide classes of topological spaces. In particular, we prove that for a topological space X and a contractible space Y a map f : X → Y belongs to the n th stable Baire class if and only if there exist a sequence ( f k ) k = 1 ∞ of continuous maps f k : X → Y and a sequence ( F k ) k = 1 ∞ of functionally ambiguous sets of the n th class in X such that f | F k = f k | F k for every k . Moreover, we show that every monotone function f : R → R is of the α th stable Baire class if and only if it belongs to the first stable Baire class.
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-016-0636-8