On stable Baire classes
We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps f : X → Y of the class α for wide classes of topological spaces. In particular, we prove that for a topological space X and a contractible space Y a map f : X → Y belongs to the n th stable B...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2016-10, Vol.150 (1), p.36-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps
f
:
X
→
Y
of the class
α
for wide classes of topological spaces. In particular, we prove that for a topological space
X
and a contractible space
Y
a map
f
:
X
→
Y
belongs to the
n
th stable Baire class if and only if there exist a sequence
(
f
k
)
k
=
1
∞
of continuous maps
f
k
:
X
→
Y
and a sequence
(
F
k
)
k
=
1
∞
of functionally ambiguous sets of the
n
th class in
X
such that
f
|
F
k
=
f
k
|
F
k
for every
k
. Moreover, we show that every monotone function
f
:
R
→
R
is of the
α
th stable Baire class if and only if it belongs to the first stable Baire class. |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-016-0636-8 |