Mass in Kähler Geometry

We prove a simple, explicit formula for the mass of any asymptotically locally Euclidean (ALE) Kähler manifold, assuming only the sort of weak fall-off conditions required for the mass to actually be well-defined. For ALE scalar-flat Kähler manifolds, the mass turns out to be a topological invariant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2016-10, Vol.347 (1), p.183-221
Hauptverfasser: Hein, Hans-Joachim, LeBrun, Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a simple, explicit formula for the mass of any asymptotically locally Euclidean (ALE) Kähler manifold, assuming only the sort of weak fall-off conditions required for the mass to actually be well-defined. For ALE scalar-flat Kähler manifolds, the mass turns out to be a topological invariant, depending only on the underlying smooth manifold, the first Chern class of the complex structure, and the Kähler class of the metric. When the metric is actually AE (asymptotically Euclidean), our formula not only implies a positive mass theorem for Kähler metrics, but also yields a Penrose-type inequality for the mass.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-016-2661-4