Mass in Kähler Geometry
We prove a simple, explicit formula for the mass of any asymptotically locally Euclidean (ALE) Kähler manifold, assuming only the sort of weak fall-off conditions required for the mass to actually be well-defined. For ALE scalar-flat Kähler manifolds, the mass turns out to be a topological invariant...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2016-10, Vol.347 (1), p.183-221 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a simple, explicit formula for the mass of any asymptotically locally Euclidean (ALE) Kähler manifold, assuming only the sort of weak fall-off conditions required for the mass to actually be well-defined. For ALE scalar-flat Kähler manifolds, the mass turns out to be a topological invariant, depending only on the underlying smooth manifold, the first Chern class of the complex structure, and the Kähler class of the metric. When the metric is actually AE (asymptotically Euclidean), our formula not only implies a positive mass theorem for Kähler metrics, but also yields a Penrose-type inequality for the mass. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-016-2661-4 |