On Higher-Order Szegő Theorems with a Single Critical Point of Arbitrary Order

We prove the following higher-order Szegő theorem: If a measure on the unit circle has absolutely continuous part w ( θ ) and Verblunsky coefficients α with square-summable variation, then for any positive integer m , is finite if and only if α ∈ ℓ 2 m + 2 . This is the first known equivalence resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive approximation 2016-10, Vol.44 (2), p.283-296
1. Verfasser: Lukic, Milivoje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the following higher-order Szegő theorem: If a measure on the unit circle has absolutely continuous part w ( θ ) and Verblunsky coefficients α with square-summable variation, then for any positive integer m , is finite if and only if α ∈ ℓ 2 m + 2 . This is the first known equivalence result of this kind in the regime of very slow decay, i.e., with ℓ p conditions with arbitrarily large p . The usual difficulty of controlling higher-order sum rules is avoided by a new test sequence approach.
ISSN:0176-4276
1432-0940
DOI:10.1007/s00365-015-9320-4