On Higher-Order Szegő Theorems with a Single Critical Point of Arbitrary Order
We prove the following higher-order Szegő theorem: If a measure on the unit circle has absolutely continuous part w ( θ ) and Verblunsky coefficients α with square-summable variation, then for any positive integer m , is finite if and only if α ∈ ℓ 2 m + 2 . This is the first known equivalence resul...
Gespeichert in:
Veröffentlicht in: | Constructive approximation 2016-10, Vol.44 (2), p.283-296 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the following higher-order Szegő theorem: If a measure on the unit circle has absolutely continuous part
w
(
θ
)
and Verblunsky coefficients
α
with square-summable variation, then for any positive integer
m
,
is finite if and only if
α
∈
ℓ
2
m
+
2
. This is the first known equivalence result of this kind in the regime of very slow decay, i.e., with
ℓ
p
conditions with arbitrarily large
p
. The usual difficulty of controlling higher-order sum rules is avoided by a new test sequence approach. |
---|---|
ISSN: | 0176-4276 1432-0940 |
DOI: | 10.1007/s00365-015-9320-4 |