Application of cluster analysis and autoregressive neural networks for the noise diagnostics of the IBR-2M reactor

The pattern recognition methodologies and artificial neural networks were used widely for the IBR-2M pulsed reactor noise diagnostics. The cluster analysis allows a detailed study of the structure and fast reactivity effects of IBR-2M and nonlinear autoregressive neural network (NAR) with local feed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of particles and nuclei letters 2016-09, Vol.13 (5), p.704-707
Hauptverfasser: Pepelyshev, Yu. N., Tsogtsaikhan, Ts, Ososkov, G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pattern recognition methodologies and artificial neural networks were used widely for the IBR-2M pulsed reactor noise diagnostics. The cluster analysis allows a detailed study of the structure and fast reactivity effects of IBR-2M and nonlinear autoregressive neural network (NAR) with local feedback connection allows predicting slow reactivity effects. In this work we present results of a study on pulse energy noise dynamics and prediction of liquid sodium flow rate through the core of the IBR-2M reactor using cluster analysis and an artificial neural network.
ISSN:1547-4771
1531-8567
DOI:10.1134/S1547477116050381