Application of cluster analysis and autoregressive neural networks for the noise diagnostics of the IBR-2M reactor
The pattern recognition methodologies and artificial neural networks were used widely for the IBR-2M pulsed reactor noise diagnostics. The cluster analysis allows a detailed study of the structure and fast reactivity effects of IBR-2M and nonlinear autoregressive neural network (NAR) with local feed...
Gespeichert in:
Veröffentlicht in: | Physics of particles and nuclei letters 2016-09, Vol.13 (5), p.704-707 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pattern recognition methodologies and artificial neural networks were used widely for the IBR-2M pulsed reactor noise diagnostics. The cluster analysis allows a detailed study of the structure and fast reactivity effects of IBR-2M and nonlinear autoregressive neural network (NAR) with local feedback connection allows predicting slow reactivity effects. In this work we present results of a study on pulse energy noise dynamics and prediction of liquid sodium flow rate through the core of the IBR-2M reactor using cluster analysis and an artificial neural network. |
---|---|
ISSN: | 1547-4771 1531-8567 |
DOI: | 10.1134/S1547477116050381 |