Complex entropy and resultant information measures
Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state φ ( r ) = R ( r ) exp [ i ϕ ( r ) ] , due to the state probability density p ( r ) = R ( r ) 2 and its phase ϕ ( r ) or current j ( r ) = ħ / m p (...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2016-10, Vol.54 (9), p.1777-1782 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classical and nonclassical contributions to Author’s resultant Shannon- and Fisher-type measures of the information content in general electronic state
φ
(
r
)
=
R
(
r
)
exp
[
i
ϕ
(
r
)
]
, due to the state probability density
p
(
r
)
=
R
(
r
)
2
and its phase
ϕ
(
r
)
or current
j
(
r
)
=
ħ
/
m
p
(
r
)
∇
ϕ
r
distributions, respectively, are reexamined. The components of the overall entropy,
S
[
φ
]
≡
-
∫
p
(
r
)
[
ln
p
(
r
)
+
2
ϕ
(
r
)
]
d
r
≡
S
[
p
]
+
S
[
ϕ
]
,
are shown to determine the real and imaginary parts of the state
complex
Shannon entropy,
H
[
φ
]
≡
-
2
φ
|
ln
φ
|
φ
=
S
p
+
i
S
[
ϕ
]
,
a natural quantum-amplitude generalization of the classical Shannon entropy. Its contributions are related to the associated terms in the state resultant Fisher information,
I
[
φ
]
≡
-
4
⟨
φ
|
∇
2
|
φ
⟩
≡
∫
p
(
r
)
{
[
∇
ln
p
(
r
)
]
2
+
[
2
∇
ϕ
r
]
2
}
d
r
≡
I
[
p
]
+
I
[
ϕ
]
=
I
[
p
]
+
∫
p
(
r
)
[
(
2
m
/
ħ
)
j
(
r
)
/
p
(
r
)
]
2
d
r
≡
I
[
p
]
+
I
[
j
]
,
and the gradient entropy:
I
~
[
φ
]
≡
⟨
φ
|
[
(
∇
ln
p
)
2
+
(
i
2
∇
ϕ
)
2
]
|
φ
⟩
=
I
[
p
]
-
I
[
ϕ
]
=
I
~
[
p
]
+
I
~
[
ϕ
]
. |
---|---|
ISSN: | 0259-9791 1572-8897 |
DOI: | 10.1007/s10910-016-0651-6 |