On Markushevich bases in preduals of von Neumann algebras

We prove that the predual of any von Neumann algebra is 1-Plichko, i.e., it has a countably 1-norming Markushevich basis. This answers a question of the third author who proved the same for preduals of semifinite von Neumann algebras. As a corollary we obtain an easier proof of a result of U. Haager...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2016-07, Vol.214 (2), p.867-884
Hauptverfasser: Bohata, Martin, Hamhalter, Jan, Kalenda, Ondřej F. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the predual of any von Neumann algebra is 1-Plichko, i.e., it has a countably 1-norming Markushevich basis. This answers a question of the third author who proved the same for preduals of semifinite von Neumann algebras. As a corollary we obtain an easier proof of a result of U. Haagerup that the predual of any von Neumann algebra enjoys the separable complementation property. We further prove that the selfadjoint part of the predual is 1-Plichko as well.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-016-1365-y