On Markushevich bases in preduals of von Neumann algebras
We prove that the predual of any von Neumann algebra is 1-Plichko, i.e., it has a countably 1-norming Markushevich basis. This answers a question of the third author who proved the same for preduals of semifinite von Neumann algebras. As a corollary we obtain an easier proof of a result of U. Haager...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2016-07, Vol.214 (2), p.867-884 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the predual of any von Neumann algebra is 1-Plichko, i.e., it has a countably 1-norming Markushevich basis. This answers a question of the third author who proved the same for preduals of semifinite von Neumann algebras. As a corollary we obtain an easier proof of a result of U. Haagerup that the predual of any von Neumann algebra enjoys the separable complementation property. We further prove that the selfadjoint part of the predual is 1-Plichko as well. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-016-1365-y |