Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below

We prove existence and uniqueness of optimal maps on RCD ∗ ( K , N ) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of RCD ∗ ( K , N ) bounds.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2016-10, Vol.26 (4), p.2914-2929
Hauptverfasser: Gigli, Nicola, Rajala, Tapio, Sturm, Karl-Theodor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2929
container_issue 4
container_start_page 2914
container_title The Journal of Geometric Analysis
container_volume 26
creator Gigli, Nicola
Rajala, Tapio
Sturm, Karl-Theodor
description We prove existence and uniqueness of optimal maps on RCD ∗ ( K , N ) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of RCD ∗ ( K , N ) bounds.
doi_str_mv 10.1007/s12220-015-9654-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880874576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339552</galeid><sourcerecordid>A707339552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-575c1be00469d2393c61832a7d7e4b2315a0eafbcde12d094413d06da1897ea43</originalsourceid><addsrcrecordid>eNp1kE1rHSEUhofSQNOkP6A7oWvTo47jzDK5-WghIZAP6E68eiY13KtTdZLcf18v00U2RUE5vI-8Pk3zlcEJA1DfM-OcAwUm6dDJlu4-NIdMyoEC8F8f6x0k0G7g3afmc87PAG0nWnXYuNup-K3ZkBszZWKCIxdvUwwYijfFx0DqvvTBF6Tnfosh11lN30_GYiavvvwmd95aT1ZzejFlTkjO4hwcOjKmuCVnuImvx83BaDYZv_w7j5rHy4uH1Q96fXv1c3V6Ta2QslCppGVr3HcbHBeDsB3rBTfKKWzXXDBpAM24tg4ZdzC0LRMOOmdYPyg0rThqvi3vTin-mTEX_RznVPtmzfoeetVK1dXUyZJ6MhvUPoyxJGPrcrj1tv599HV-qkAJMUjJK8AWwKaYc8JRT6k6SzvNQO_t68W-rvb13r7eVYYvTK7Z8ITpXZX_Qn8BtWiH6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880874576</pqid></control><display><type>article</type><title>Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below</title><source>Springer Nature - Complete Springer Journals</source><creator>Gigli, Nicola ; Rajala, Tapio ; Sturm, Karl-Theodor</creator><creatorcontrib>Gigli, Nicola ; Rajala, Tapio ; Sturm, Karl-Theodor</creatorcontrib><description>We prove existence and uniqueness of optimal maps on RCD ∗ ( K , N ) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of RCD ∗ ( K , N ) bounds.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-015-9654-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Curvature ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Uniqueness</subject><ispartof>The Journal of Geometric Analysis, 2016-10, Vol.26 (4), p.2914-2929</ispartof><rights>Mathematica Josephina, Inc. 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-575c1be00469d2393c61832a7d7e4b2315a0eafbcde12d094413d06da1897ea43</citedby><cites>FETCH-LOGICAL-c355t-575c1be00469d2393c61832a7d7e4b2315a0eafbcde12d094413d06da1897ea43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-015-9654-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-015-9654-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gigli, Nicola</creatorcontrib><creatorcontrib>Rajala, Tapio</creatorcontrib><creatorcontrib>Sturm, Karl-Theodor</creatorcontrib><title>Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We prove existence and uniqueness of optimal maps on RCD ∗ ( K , N ) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of RCD ∗ ( K , N ) bounds.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Uniqueness</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rHSEUhofSQNOkP6A7oWvTo47jzDK5-WghIZAP6E68eiY13KtTdZLcf18v00U2RUE5vI-8Pk3zlcEJA1DfM-OcAwUm6dDJlu4-NIdMyoEC8F8f6x0k0G7g3afmc87PAG0nWnXYuNup-K3ZkBszZWKCIxdvUwwYijfFx0DqvvTBF6Tnfosh11lN30_GYiavvvwmd95aT1ZzejFlTkjO4hwcOjKmuCVnuImvx83BaDYZv_w7j5rHy4uH1Q96fXv1c3V6Ta2QslCppGVr3HcbHBeDsB3rBTfKKWzXXDBpAM24tg4ZdzC0LRMOOmdYPyg0rThqvi3vTin-mTEX_RznVPtmzfoeetVK1dXUyZJ6MhvUPoyxJGPrcrj1tv599HV-qkAJMUjJK8AWwKaYc8JRT6k6SzvNQO_t68W-rvb13r7eVYYvTK7Z8ITpXZX_Qn8BtWiH6g</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Gigli, Nicola</creator><creator>Rajala, Tapio</creator><creator>Sturm, Karl-Theodor</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20161001</creationdate><title>Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below</title><author>Gigli, Nicola ; Rajala, Tapio ; Sturm, Karl-Theodor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-575c1be00469d2393c61832a7d7e4b2315a0eafbcde12d094413d06da1897ea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gigli, Nicola</creatorcontrib><creatorcontrib>Rajala, Tapio</creatorcontrib><creatorcontrib>Sturm, Karl-Theodor</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gigli, Nicola</au><au>Rajala, Tapio</au><au>Sturm, Karl-Theodor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>26</volume><issue>4</issue><spage>2914</spage><epage>2929</epage><pages>2914-2929</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We prove existence and uniqueness of optimal maps on RCD ∗ ( K , N ) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of RCD ∗ ( K , N ) bounds.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-015-9654-y</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2016-10, Vol.26 (4), p.2914-2929
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_1880874576
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Curvature
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
Uniqueness
title Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Maps%20and%20Exponentiation%20on%20Finite-Dimensional%20Spaces%20with%20Ricci%20Curvature%20Bounded%20from%20Below&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Gigli,%20Nicola&rft.date=2016-10-01&rft.volume=26&rft.issue=4&rft.spage=2914&rft.epage=2929&rft.pages=2914-2929&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-015-9654-y&rft_dat=%3Cgale_proqu%3EA707339552%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880874576&rft_id=info:pmid/&rft_galeid=A707339552&rfr_iscdi=true