Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below
We prove existence and uniqueness of optimal maps on RCD ∗ ( K , N ) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of RCD ∗ ( K , N ) bounds.
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2016-10, Vol.26 (4), p.2914-2929 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2929 |
---|---|
container_issue | 4 |
container_start_page | 2914 |
container_title | The Journal of Geometric Analysis |
container_volume | 26 |
creator | Gigli, Nicola Rajala, Tapio Sturm, Karl-Theodor |
description | We prove existence and uniqueness of optimal maps on
RCD
∗
(
K
,
N
)
spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of
RCD
∗
(
K
,
N
)
bounds. |
doi_str_mv | 10.1007/s12220-015-9654-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880874576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339552</galeid><sourcerecordid>A707339552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-575c1be00469d2393c61832a7d7e4b2315a0eafbcde12d094413d06da1897ea43</originalsourceid><addsrcrecordid>eNp1kE1rHSEUhofSQNOkP6A7oWvTo47jzDK5-WghIZAP6E68eiY13KtTdZLcf18v00U2RUE5vI-8Pk3zlcEJA1DfM-OcAwUm6dDJlu4-NIdMyoEC8F8f6x0k0G7g3afmc87PAG0nWnXYuNup-K3ZkBszZWKCIxdvUwwYijfFx0DqvvTBF6Tnfosh11lN30_GYiavvvwmd95aT1ZzejFlTkjO4hwcOjKmuCVnuImvx83BaDYZv_w7j5rHy4uH1Q96fXv1c3V6Ta2QslCppGVr3HcbHBeDsB3rBTfKKWzXXDBpAM24tg4ZdzC0LRMOOmdYPyg0rThqvi3vTin-mTEX_RznVPtmzfoeetVK1dXUyZJ6MhvUPoyxJGPrcrj1tv599HV-qkAJMUjJK8AWwKaYc8JRT6k6SzvNQO_t68W-rvb13r7eVYYvTK7Z8ITpXZX_Qn8BtWiH6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880874576</pqid></control><display><type>article</type><title>Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below</title><source>Springer Nature - Complete Springer Journals</source><creator>Gigli, Nicola ; Rajala, Tapio ; Sturm, Karl-Theodor</creator><creatorcontrib>Gigli, Nicola ; Rajala, Tapio ; Sturm, Karl-Theodor</creatorcontrib><description>We prove existence and uniqueness of optimal maps on
RCD
∗
(
K
,
N
)
spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of
RCD
∗
(
K
,
N
)
bounds.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-015-9654-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Curvature ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Uniqueness</subject><ispartof>The Journal of Geometric Analysis, 2016-10, Vol.26 (4), p.2914-2929</ispartof><rights>Mathematica Josephina, Inc. 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-575c1be00469d2393c61832a7d7e4b2315a0eafbcde12d094413d06da1897ea43</citedby><cites>FETCH-LOGICAL-c355t-575c1be00469d2393c61832a7d7e4b2315a0eafbcde12d094413d06da1897ea43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-015-9654-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-015-9654-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gigli, Nicola</creatorcontrib><creatorcontrib>Rajala, Tapio</creatorcontrib><creatorcontrib>Sturm, Karl-Theodor</creatorcontrib><title>Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We prove existence and uniqueness of optimal maps on
RCD
∗
(
K
,
N
)
spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of
RCD
∗
(
K
,
N
)
bounds.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Uniqueness</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rHSEUhofSQNOkP6A7oWvTo47jzDK5-WghIZAP6E68eiY13KtTdZLcf18v00U2RUE5vI-8Pk3zlcEJA1DfM-OcAwUm6dDJlu4-NIdMyoEC8F8f6x0k0G7g3afmc87PAG0nWnXYuNup-K3ZkBszZWKCIxdvUwwYijfFx0DqvvTBF6Tnfosh11lN30_GYiavvvwmd95aT1ZzejFlTkjO4hwcOjKmuCVnuImvx83BaDYZv_w7j5rHy4uH1Q96fXv1c3V6Ta2QslCppGVr3HcbHBeDsB3rBTfKKWzXXDBpAM24tg4ZdzC0LRMOOmdYPyg0rThqvi3vTin-mTEX_RznVPtmzfoeetVK1dXUyZJ6MhvUPoyxJGPrcrj1tv599HV-qkAJMUjJK8AWwKaYc8JRT6k6SzvNQO_t68W-rvb13r7eVYYvTK7Z8ITpXZX_Qn8BtWiH6g</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Gigli, Nicola</creator><creator>Rajala, Tapio</creator><creator>Sturm, Karl-Theodor</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20161001</creationdate><title>Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below</title><author>Gigli, Nicola ; Rajala, Tapio ; Sturm, Karl-Theodor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-575c1be00469d2393c61832a7d7e4b2315a0eafbcde12d094413d06da1897ea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gigli, Nicola</creatorcontrib><creatorcontrib>Rajala, Tapio</creatorcontrib><creatorcontrib>Sturm, Karl-Theodor</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gigli, Nicola</au><au>Rajala, Tapio</au><au>Sturm, Karl-Theodor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>26</volume><issue>4</issue><spage>2914</spage><epage>2929</epage><pages>2914-2929</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We prove existence and uniqueness of optimal maps on
RCD
∗
(
K
,
N
)
spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of
RCD
∗
(
K
,
N
)
bounds.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-015-9654-y</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2016-10, Vol.26 (4), p.2914-2929 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_1880874576 |
source | Springer Nature - Complete Springer Journals |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Curvature Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics Uniqueness |
title | Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Maps%20and%20Exponentiation%20on%20Finite-Dimensional%20Spaces%20with%20Ricci%20Curvature%20Bounded%20from%20Below&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Gigli,%20Nicola&rft.date=2016-10-01&rft.volume=26&rft.issue=4&rft.spage=2914&rft.epage=2929&rft.pages=2914-2929&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-015-9654-y&rft_dat=%3Cgale_proqu%3EA707339552%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880874576&rft_id=info:pmid/&rft_galeid=A707339552&rfr_iscdi=true |