Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below
We prove existence and uniqueness of optimal maps on RCD ∗ ( K , N ) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of RCD ∗ ( K , N ) bounds.
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2016-10, Vol.26 (4), p.2914-2929 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove existence and uniqueness of optimal maps on
RCD
∗
(
K
,
N
)
spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of
RCD
∗
(
K
,
N
)
bounds. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-015-9654-y |