Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below

We prove existence and uniqueness of optimal maps on RCD ∗ ( K , N ) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of RCD ∗ ( K , N ) bounds.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2016-10, Vol.26 (4), p.2914-2929
Hauptverfasser: Gigli, Nicola, Rajala, Tapio, Sturm, Karl-Theodor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove existence and uniqueness of optimal maps on RCD ∗ ( K , N ) spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation and to the local-to-global property of RCD ∗ ( K , N ) bounds.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-015-9654-y