Stable hypersurfaces with zero scalar curvature in Euclidean space

In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arkiv för matematik 2016-10, Vol.54 (2), p.233-241
Hauptverfasser: Alencar, Hilário, do Carmo, Manfredo, Neto, Gregório Silva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 2
container_start_page 233
container_title Arkiv för matematik
container_volume 54
creator Alencar, Hilário
do Carmo, Manfredo
Neto, Gregório Silva
description In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.
doi_str_mv 10.1007/s11512-016-0232-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880870652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880870652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-eb6e50190e138d7f008a190b1294e95e28661e0ae6316d17cd04b880c70dcc853</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIzzA9wFXEfvTR9JlzqMDxhwoa5Dmt46ldrWpFXGX2-GunDj6nLgO-fCx9g5wiUCqKuAmKEUgLkAmUihj9gCtUIhU62O2QIAUiFBwylbhdCUMR4SqgW7eRpt2RLf7QfyYfK1dRT4VzPu-Df5ngdnW-u5m_ynHSdPvOn4ZnJtU5HteBgifsZOatsGWv3eJXu53Tyv78X28e5hfb0VLsmKUVCZUwZYAGGiK1UDaBtTibJIqchI6jxHAkt5gnmFylWQllqDU1A5p7NkyS7m3cH3HxOF0bz1k-_iS4OR0wryTEYKZ8r5PgRPtRl882793iCYgy0z2zLRljnYMjp25NwJke1eyf9Z_rf0A54ha3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880870652</pqid></control><display><type>article</type><title>Stable hypersurfaces with zero scalar curvature in Euclidean space</title><source>International Press Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Open Access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Alencar, Hilário ; do Carmo, Manfredo ; Neto, Gregório Silva</creator><creatorcontrib>Alencar, Hilário ; do Carmo, Manfredo ; Neto, Gregório Silva</creatorcontrib><description>In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.</description><identifier>ISSN: 0004-2080</identifier><identifier>EISSN: 1871-2487</identifier><identifier>DOI: 10.1007/s11512-016-0232-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Curvature ; Dimensional stability ; Euclidean geometry ; Euclidean space ; Geometry ; Mathematics ; Mathematics and Statistics</subject><ispartof>Arkiv för matematik, 2016-10, Vol.54 (2), p.233-241</ispartof><rights>Institut Mittag-Leffler 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-eb6e50190e138d7f008a190b1294e95e28661e0ae6316d17cd04b880c70dcc853</citedby><cites>FETCH-LOGICAL-c359t-eb6e50190e138d7f008a190b1294e95e28661e0ae6316d17cd04b880c70dcc853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11512-016-0232-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11512-016-0232-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Alencar, Hilário</creatorcontrib><creatorcontrib>do Carmo, Manfredo</creatorcontrib><creatorcontrib>Neto, Gregório Silva</creatorcontrib><title>Stable hypersurfaces with zero scalar curvature in Euclidean space</title><title>Arkiv för matematik</title><addtitle>Ark Mat</addtitle><description>In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.</description><subject>Curvature</subject><subject>Dimensional stability</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0004-2080</issn><issn>1871-2487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOIzzA9wFXEfvTR9JlzqMDxhwoa5Dmt46ldrWpFXGX2-GunDj6nLgO-fCx9g5wiUCqKuAmKEUgLkAmUihj9gCtUIhU62O2QIAUiFBwylbhdCUMR4SqgW7eRpt2RLf7QfyYfK1dRT4VzPu-Df5ngdnW-u5m_ynHSdPvOn4ZnJtU5HteBgifsZOatsGWv3eJXu53Tyv78X28e5hfb0VLsmKUVCZUwZYAGGiK1UDaBtTibJIqchI6jxHAkt5gnmFylWQllqDU1A5p7NkyS7m3cH3HxOF0bz1k-_iS4OR0wryTEYKZ8r5PgRPtRl882793iCYgy0z2zLRljnYMjp25NwJke1eyf9Z_rf0A54ha3A</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Alencar, Hilário</creator><creator>do Carmo, Manfredo</creator><creator>Neto, Gregório Silva</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Stable hypersurfaces with zero scalar curvature in Euclidean space</title><author>Alencar, Hilário ; do Carmo, Manfredo ; Neto, Gregório Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-eb6e50190e138d7f008a190b1294e95e28661e0ae6316d17cd04b880c70dcc853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Curvature</topic><topic>Dimensional stability</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alencar, Hilário</creatorcontrib><creatorcontrib>do Carmo, Manfredo</creatorcontrib><creatorcontrib>Neto, Gregório Silva</creatorcontrib><collection>CrossRef</collection><jtitle>Arkiv för matematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alencar, Hilário</au><au>do Carmo, Manfredo</au><au>Neto, Gregório Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable hypersurfaces with zero scalar curvature in Euclidean space</atitle><jtitle>Arkiv för matematik</jtitle><stitle>Ark Mat</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>54</volume><issue>2</issue><spage>233</spage><epage>241</epage><pages>233-241</pages><issn>0004-2080</issn><eissn>1871-2487</eissn><abstract>In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11512-016-0232-8</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-2080
ispartof Arkiv för matematik, 2016-10, Vol.54 (2), p.233-241
issn 0004-2080
1871-2487
language eng
recordid cdi_proquest_journals_1880870652
source International Press Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Open Access; SpringerLink Journals - AutoHoldings
subjects Curvature
Dimensional stability
Euclidean geometry
Euclidean space
Geometry
Mathematics
Mathematics and Statistics
title Stable hypersurfaces with zero scalar curvature in Euclidean space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20hypersurfaces%20with%20zero%20scalar%20curvature%20in%20Euclidean%20space&rft.jtitle=Arkiv%20f%C3%B6r%20matematik&rft.au=Alencar,%20Hil%C3%A1rio&rft.date=2016-10-01&rft.volume=54&rft.issue=2&rft.spage=233&rft.epage=241&rft.pages=233-241&rft.issn=0004-2080&rft.eissn=1871-2487&rft_id=info:doi/10.1007/s11512-016-0232-8&rft_dat=%3Cproquest_cross%3E1880870652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880870652&rft_id=info:pmid/&rfr_iscdi=true