Stable hypersurfaces with zero scalar curvature in Euclidean space
In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kr...
Gespeichert in:
Veröffentlicht in: | Arkiv för matematik 2016-10, Vol.54 (2), p.233-241 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 2 |
container_start_page | 233 |
container_title | Arkiv för matematik |
container_volume | 54 |
creator | Alencar, Hilário do Carmo, Manfredo Neto, Gregório Silva |
description | In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain. |
doi_str_mv | 10.1007/s11512-016-0232-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880870652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880870652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-eb6e50190e138d7f008a190b1294e95e28661e0ae6316d17cd04b880c70dcc853</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIzzA9wFXEfvTR9JlzqMDxhwoa5Dmt46ldrWpFXGX2-GunDj6nLgO-fCx9g5wiUCqKuAmKEUgLkAmUihj9gCtUIhU62O2QIAUiFBwylbhdCUMR4SqgW7eRpt2RLf7QfyYfK1dRT4VzPu-Df5ngdnW-u5m_ynHSdPvOn4ZnJtU5HteBgifsZOatsGWv3eJXu53Tyv78X28e5hfb0VLsmKUVCZUwZYAGGiK1UDaBtTibJIqchI6jxHAkt5gnmFylWQllqDU1A5p7NkyS7m3cH3HxOF0bz1k-_iS4OR0wryTEYKZ8r5PgRPtRl882793iCYgy0z2zLRljnYMjp25NwJke1eyf9Z_rf0A54ha3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880870652</pqid></control><display><type>article</type><title>Stable hypersurfaces with zero scalar curvature in Euclidean space</title><source>International Press Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Open Access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Alencar, Hilário ; do Carmo, Manfredo ; Neto, Gregório Silva</creator><creatorcontrib>Alencar, Hilário ; do Carmo, Manfredo ; Neto, Gregório Silva</creatorcontrib><description>In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.</description><identifier>ISSN: 0004-2080</identifier><identifier>EISSN: 1871-2487</identifier><identifier>DOI: 10.1007/s11512-016-0232-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Curvature ; Dimensional stability ; Euclidean geometry ; Euclidean space ; Geometry ; Mathematics ; Mathematics and Statistics</subject><ispartof>Arkiv för matematik, 2016-10, Vol.54 (2), p.233-241</ispartof><rights>Institut Mittag-Leffler 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-eb6e50190e138d7f008a190b1294e95e28661e0ae6316d17cd04b880c70dcc853</citedby><cites>FETCH-LOGICAL-c359t-eb6e50190e138d7f008a190b1294e95e28661e0ae6316d17cd04b880c70dcc853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11512-016-0232-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11512-016-0232-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Alencar, Hilário</creatorcontrib><creatorcontrib>do Carmo, Manfredo</creatorcontrib><creatorcontrib>Neto, Gregório Silva</creatorcontrib><title>Stable hypersurfaces with zero scalar curvature in Euclidean space</title><title>Arkiv för matematik</title><addtitle>Ark Mat</addtitle><description>In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.</description><subject>Curvature</subject><subject>Dimensional stability</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0004-2080</issn><issn>1871-2487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOIzzA9wFXEfvTR9JlzqMDxhwoa5Dmt46ldrWpFXGX2-GunDj6nLgO-fCx9g5wiUCqKuAmKEUgLkAmUihj9gCtUIhU62O2QIAUiFBwylbhdCUMR4SqgW7eRpt2RLf7QfyYfK1dRT4VzPu-Df5ngdnW-u5m_ynHSdPvOn4ZnJtU5HteBgifsZOatsGWv3eJXu53Tyv78X28e5hfb0VLsmKUVCZUwZYAGGiK1UDaBtTibJIqchI6jxHAkt5gnmFylWQllqDU1A5p7NkyS7m3cH3HxOF0bz1k-_iS4OR0wryTEYKZ8r5PgRPtRl882793iCYgy0z2zLRljnYMjp25NwJke1eyf9Z_rf0A54ha3A</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Alencar, Hilário</creator><creator>do Carmo, Manfredo</creator><creator>Neto, Gregório Silva</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Stable hypersurfaces with zero scalar curvature in Euclidean space</title><author>Alencar, Hilário ; do Carmo, Manfredo ; Neto, Gregório Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-eb6e50190e138d7f008a190b1294e95e28661e0ae6316d17cd04b880c70dcc853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Curvature</topic><topic>Dimensional stability</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alencar, Hilário</creatorcontrib><creatorcontrib>do Carmo, Manfredo</creatorcontrib><creatorcontrib>Neto, Gregório Silva</creatorcontrib><collection>CrossRef</collection><jtitle>Arkiv för matematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alencar, Hilário</au><au>do Carmo, Manfredo</au><au>Neto, Gregório Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable hypersurfaces with zero scalar curvature in Euclidean space</atitle><jtitle>Arkiv för matematik</jtitle><stitle>Ark Mat</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>54</volume><issue>2</issue><spage>233</spage><epage>241</epage><pages>233-241</pages><issn>0004-2080</issn><eissn>1871-2487</eissn><abstract>In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11512-016-0232-8</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-2080 |
ispartof | Arkiv för matematik, 2016-10, Vol.54 (2), p.233-241 |
issn | 0004-2080 1871-2487 |
language | eng |
recordid | cdi_proquest_journals_1880870652 |
source | International Press Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Open Access; SpringerLink Journals - AutoHoldings |
subjects | Curvature Dimensional stability Euclidean geometry Euclidean space Geometry Mathematics Mathematics and Statistics |
title | Stable hypersurfaces with zero scalar curvature in Euclidean space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20hypersurfaces%20with%20zero%20scalar%20curvature%20in%20Euclidean%20space&rft.jtitle=Arkiv%20f%C3%B6r%20matematik&rft.au=Alencar,%20Hil%C3%A1rio&rft.date=2016-10-01&rft.volume=54&rft.issue=2&rft.spage=233&rft.epage=241&rft.pages=233-241&rft.issn=0004-2080&rft.eissn=1871-2487&rft_id=info:doi/10.1007/s11512-016-0232-8&rft_dat=%3Cproquest_cross%3E1880870652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880870652&rft_id=info:pmid/&rfr_iscdi=true |