Stable hypersurfaces with zero scalar curvature in Euclidean space

In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arkiv för matematik 2016-10, Vol.54 (2), p.233-241
Hauptverfasser: Alencar, Hilário, do Carmo, Manfredo, Neto, Gregório Silva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.
ISSN:0004-2080
1871-2487
DOI:10.1007/s11512-016-0232-8